Technische Universitidt Miinchen SS 23
Institut fiir Informatik 6. 6. 2023
Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 7

Exercise 7.1 Round wrt. Binary Search Tree

The distance between two integers z and y is |z — y|.

1. Define a function round :: int tree = int = int option, such that round t x returns
an element of a binary search tree ¢ with minimum distance to z, and None if and
only if ¢ is empty.

Define your function such that it does no unnecessary recursions into branches of
the tree that are known to not contain a minimum distance element.

2. Specify and prove that your function is correct. Note: You are required to phrase
the correctness properties yourself!

Hint: Specify 3 properties:
e None is returned only for the empty tree.
e Only elements of the tree are returned.

e The returned element has minimum distance.

3. Estimate the time of your round function to be linear in the height of the tree

fun round :: “int tree = int = int option”
fun T round :: “int tree = int = nat”

Exercise 7.2 Interval Lists

Sets of natural numbers can be implemented as lists of intervals, where an interval is
simply a pair of numbers. For example the set {2, 3, 5, 7, 8, 9} can be represented
by the list [(2, 3), (5, 5), (7, 9)]. A typical application is the list of free blocks of
dynamically allocated memory.

We introduce the type

type__synonym intervals = “(natxnat) list”

Next, define an invariant that characterizes valid interval lists: For efficiency reasons
intervals should be sorted in ascending order, the lower bound of each interval should

be less than or equal to the upper bound, and the intervals should be chosen as large
as possible, i.e. no two adjacent intervals should overlap or even touch each other. It
turns out to be convenient to define inv in terms of a more general function such that
the additional argument is a lower bound for the intervals in the list:

fun inv’ :: “nat = intervals = bool”
definition inv where “inv = inv’ 07

To relate intervals back to sets define an abstraction function

fun set_of :: “intervals = nat set”

Define a function to add a single element to the interval list, and show its correctness

fun add :: “nat = intervals = intervals”
lemma add_correct 1:
“inv is = inv (add x is)”
lemma add_correct 2:
“inv is = set_of (add z is) = insert z (set_of is)”

Hints:
o Sketch the different cases (position of element relative to the first interval of the
list) on paper first
e In one case, you will also need information about the second interval of the list.
Do this case split via an auxiliary function! Otherwise, you may end up with a

recursion equation of the form f (z#xs) = ... case zs of v'#as’' = ... f (z'#xs’)
. combined with split: list.splits this will make the simplifier loop!

Homework 7.1 Deletion from Interval Lists

Submission until Monday, 12 June, 23:59pm.
Implement and prove correct a delete function.

Hints:
e The correctness lemma is analogous to the one for add.
« A monotonicity property on inv’ may be useful, i.e., inv’ m is = inv’ m’ is if m’
<m

o A bounding lemma, relating m and the elements of set_of is if inv’ m is, may be
useful.

fun del :: “nat = intervals = intervals”

lemma del_correct_1: “inv is = inv (del z is)”
lemma del_correct_2: “inv is = set_of (del © is) = (set_of is) — {z}”

Homework 7.2 Addition of Interval to Interval List

Submission until Monday, 12 June, 23:59pm. Implement and prove correct a function
to add a whole interval to an interval list. The runtime must not depend on the size of
the interval itself, e.g., iterating over the interval and adding the elements separately is
not allowed!

fun addi :: “nat = nat = intervals = intervals”
lemma addi_correct_1: “inv is = i<j = inv (addi i j is)”

lemma addi correct 2:
“inv is = i<j = set_of (addi i jis) = {i..j} U (set_of is)”

