Technische Universitidt Miinchen SS 23
Institut fiir Informatik 27. 6. 2023
Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 10

Exercise 10.1 Union Function on Tries

Define a function to union two tries and show its correctness:

fun union :: “trie = trie = trie”
lemma “isin (union a b) x = isin a © V isin b x”

Exercise 10.2 Tries with 2-3-trees

In the lecture, tries stored child nodes with an abstract map. We want to refine the trie
data structure to use 2-3-trees for the map. Note: To make the provided interface more
usable, we introduce some abbreviations here:

abbreviation “empty23 = Leaf”
abbreviation “inv23 t = complete t A sortedl (inorder t)”

The refined trie datatype:
datatype ‘a trie’ = Nd' bool “("ax’a trie’) tree23”

Define an invariant for trie’ and an abstraction function to trie. Based on the original
tries, define membership, insertion, and deletion, and show that they behave correctly
wrt. the abstract trie. Finally, combine the correctness lemmas to get a set interface
based on 2-3-tree tries.

You will need a lemma like the following for termination:

lemma lookup_size__aux[termination__simp]:
“lookup m k = Some v => size (vi:'a trie’) < Suc (size_tree23 (Az. Suc (size (snd z))) m)”
fun trie’ _inv :: “a::linorder trie’ = bool”
fun trie’ o :: “a::linorder trie’ = 'a trie”
definition empty’ :: “/a trie’” where
[simp]: “empty’ = Nd' False empty23”

fun isin’ ;1 “a::linorder trie’ = 'a list = bool”
fun insert’ :: “a::linorder list = 'a trie’ = 'a trie’”
fun delete’ :: “a::linorder list = 'a trie’ = 'a trie’”

definition set’ :: “a::linorder trie’ = 'a list set” where
[simp]: “set’ t = set (trie’_a t)”

lemmas map23 _thms[simp] = M.map__empty Tree23 Map.M.map__update Tree23 Map.M.map__delete
Tree23 Map.M .invar_empty Tree23 Map.M .invar_update Tree23 Map.M .invar__delete
M .invar_def M.inorder_ _update M .inorder inv_update sorted upd_ list

interpretation S’: Set

where empty = empty’ and isin = isin’ and insert = insert’ and delete = delete’
and set = set’ and invar = trie’ _inv

proof (standard, goal cases)

Homework 10.1 Tries with Same-Length Keys (8 points)

Submission until Monday, July 3, 23:59pm.

Consider the following trie datatype:

datatype trie’ = LfF | LfT | NdI (trie’ x trie’)

It is meant to store keys of the same length only. Thus, the NdI constructor stores inner

nodes, and there are two types of leaves, LfF if this path is not in the set, and LfT if it
is in the set.

Define an invariant is_trie N ¢ that states that all keys in ¢ have length N, and that
there are no superfluous nodes, i.e., no nodes of the form NdI (LfF, LfF).

fun is_trie :: “nat = trie’ = bool”

Hint: The following should evaluate to true!

value “is_trie 42 LfF”
value “is_trie 2 (NdI (LfF,NdI (LfT,LfF)))”

Whereas these should be false

value “is_trie 42 LfT”
value “is_trie 2 (NdI (LfT,NdI (LfT,LfF)))”
value “is_trie 1 (NdI (LfT,NdI (LfF,LfF)))”

Define membership, insert, and delete functions, and prove them correct!

fun isin = “trie’ = bool list = bool”
fun ins :: “bool list = trie’ = trie’”
lemma isin__ins:
assumes “is_trie n t”
and “length as = n”
shows “isin (ins as t) bs = (as = bs V isin t bs) A is_trie n (ins as t)”
fun delete :: “bool list = trie’ = trie’”
lemma isin_ delete:
assumes “is_trie n t”
shows “isin (delete as t) bs = (as#bs A isin t bs) A (is_trie n (delete as t))”

Hints:

Like in the delete function for standard trie’s, you may want to define a ”smart-
constructor” node :: trie’ x trie’ = trie’ for nodes, that constructs a node and
handles the case that both successors are LfF.

Consider proving auxiliary lemmas about the smart-constructor, instead of always
unfolding it with the simplifier.

Homework 10.2 Be Original!

Submission until Monday, July 10, 23:59pm.

Develop a nice Isabelle formalisation yourself!

You may develop a formalisation from all areas, not only functional data structures.
Creative topics are encouraged!

Document your solution well, such that it is clear what you have formalised and
what your main theorems state!

Set yourself a time frame and some intermediate/minimal goals. Your formalisation
needs not be universal and complete.

You are encouraged to discuss the realisability of your project with us!

Pick a topic this week (the regular homework is a bit shorter). Next week, the
project will be the exclusive task.

In total, the homework will yield 15 points (for minimal solutions). Additionally,
bonus points may be awarded for particularly nice/original /etc solutions.

