
Technische Universität München SS 23
Institut für Informatik 11. 7. 2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 12

Exercise 12.1 Sparse Binary Numbers

Implement operations carry, inc, and add on sparse binary numbers, analogously to the
operations link, ins, and merge on binomial heaps.
Show that the operations have logarithmic worst-case complexity.
type_synonym rank = nat
type_synonym snat = “rank list”

abbreviation invar :: “snat ⇒ bool” where “invar s ≡ sorted_wrt (<) s”
definition α :: “snat ⇒ nat” where “α s = sum_list (map ((^) 2) s)”

lemmas [simp] = sorted_wrt_append

fun carry :: “rank ⇒ snat ⇒ snat”

lemma carry_invar [simp]:
assumes “invar rs”

shows “invar (carry r rs)”

lemma carry_α:
assumes “invar rs”

and “∀ r ′∈set rs. r≤r ′”
shows “α (carry r rs) = 2^r + α rs”

definition inc :: “snat ⇒ snat”

lemma inc_invar [simp]: “invar rs =⇒ invar (inc rs)”

lemma inc_α[simp]: “invar rs =⇒ α (inc rs) = Suc (α rs)”

fun add :: “snat ⇒ snat ⇒ snat”

lemma add_invar [simp]:
assumes “invar rs1”

and “invar rs2”
shows “invar (add rs1 rs2)”

1

lemma add_α[simp]:
assumes “invar rs1”

and “invar rs2”
shows “α (add rs1 rs2) = α rs1 + α rs2”

thm sorted_wrt_less_sum_mono_lowerbound

lemma size_snat:
assumes “invar rs”

shows “2^length rs ≤ α rs + 1”

fun T_carry :: “rank ⇒ snat ⇒ nat”

definition T_inc :: “snat ⇒ nat”

lemma T_inc_bound:
assumes “invar rs”

shows “T_inc rs ≤ log 2 (α rs + 1) + 2”

fun T_add :: “snat ⇒ snat ⇒ nat”

lemma T_add_bound:
fixes rs1 rs2
defines “n1 ≡ α rs1”
defines “n2 ≡ α rs2”
assumes INVARS : “invar rs1” “invar rs2”
shows “T_add rs1 rs2 ≤ 4∗log 2 (n1 + n2 + 1) + 2”

Homework 12.1 Be Original!

Submission until Monday, July 17, 23:59pm.
Develop a nice Isabelle formalisation yourself!

• You may develop a formalisation from all areas, not only functional data structures.
Creative topics are encouraged!

• Document your solution well, such that it is clear what you have formalised and
what your main theorems state!

• Set yourself a time frame and some intermediate/minimal goals. Your formalisation
needs not be universal and complete.

• You are encouraged to discuss the realisability of your project with us!
• In total, the homework will yield 15 points (for minimal solutions). Additionally,

bonus points may be awarded for particularly nice/original/etc solutions.
• This week, polish up your project for the final submission!
• To submit, use the submission system if you have a single file. Submitting is

sufficient, ignore any errors that the submission system may raise when

2

checking the submission. If the project is more than one file, send an archive
by e-mail.

Homework 12.2 Modified Binomial Heaps (7 points)

Submission until Monday, July 17, 23:59pm.

In its simplist form, a binomial heap can be implemented using binomial trees that store
the the rank of every tree in its root. One optimisation is to eliminate the redundancy
of storing ranks in the root of every tree, and instead store the rank only at the top level
by pairing every tree with its rank in the heap. The following types describe a binomial
heap with this optimisation:
datatype ′a tree = Node ′a (′a tree list)
type_synonym ′a heap = “(nat∗ ′a tree) list”

For such a heap to be a binomial heap it has to conform to the invariant invar defined
as follows:
btree r (Node x ts) = (length ts = r ∧ (∀ (x, y)∈set (zip (rev [0..<r]) ts). btree x y))
bheap ts = ((∀ (r , t)∈set ts. btree r t) ∧ sorted_wrt (<) (map fst ts))
heap (Node x ts) = (∀ t∈set ts. heap t ∧ x ≤ tree.root t)
heaps ts = (∀ t∈set ts. heap t)
invar ts = (bheap ts ∧ heaps (map snd ts))
In this homework you are required to define an insertion and a merging functions for
this heap and show that they preserve the elements of their inputs as well as produce
heaps that conform to the invariant invar.

definition insert :: “ ′a::linorder ⇒ ′a heap ⇒ ′a heap”

lemma invar_insert[simp]: “invar t =⇒ invar (insert x t)”
lemma mset_heap_insert[simp]: “mset_heap (insert x t) = {#x#} + mset_heap t”
fun merge :: “ ′a::linorder heap ⇒ ′a heap ⇒ ′a heap”

lemma invar_merge[simp]: “[[invar ts1; invar ts2]] =⇒ invar (merge ts1 ts2)”

lemma mset_heap_merge[simp]: “mset_heap (merge ts1 ts2) = mset_heap ts1 + mset_heap
ts2”

Start from ”src/HOL/Data_Structures/Binomial_Heap.thy” that has an implementa-
tion of binomial heaps without this optimisation.

3

