Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens

Exercise 1 (Intuitionistic Proofs)

Prove the following propositions in intuitionistic logic:

- a) $(A \to A) \lor B$
- b) $A \to (B \to A \land B)$
- c) $(A \to C) \to ((B \to C) \to (A \lor B \to C))$

Exercise 2 (Intuitionistic Proof Search in Haskell)

The goal of this exercise is to implement the procedure to decide $\Gamma \vdash A$ in Haskell, i.e. the algorithm from the proof of Theorem 4.1.2.

- Have a look at the template provided on the website. It provides definitions of formulae and proof terms of intuitionistic propositional logic.
- Try to fill in the implementation of *solve*.
- Implement the three proof rules seen in the lecture: *assumption*, *intro*, and *elim*. Use the examples at the end of the template to test your implementation as you go. For *elim*, use the criterion from the proof to guess suitable instantiations.

The algorithm can be streamlined further:

- a) When trying to prove $\Gamma \vdash A \rightarrow B$, it suffices to try (\rightarrow Intro). Explain why.
- b) The attempt to prove $\Gamma \vdash A$ by assumption can be dropped if we use the following generalised \rightarrow Elim rule:

$$\frac{\Gamma \vdash A_1 \to \ldots \to A_n \to A \to B}{\Gamma \vdash A \to B} \quad \forall i \le n. \ \Gamma \vdash A_i \to \text{Elim}$$

However, the proof obtained can be different. Explain the difference and why the outright proof by assumption is subsumed.

Homework 3 (From Proof Terms to Propositions)

Consider the following proof term:

$$\lambda q. \lambda p.$$
 case $\pi_1 p$ of $in_1 a \Rightarrow in_1 (\pi_1 q, (a, \pi_2 p)) \mid in_2 b \Rightarrow in_2 (\pi_2 q, b)$

- a) Exhibit the proposition that is proved by this term.
- b) Give the corresponding proof tree.

Homework 4 (Intuitionistic Proofs)

Prove the following propositions in pure logic, without lambda-terms, and write down the λ -term corresponding to each proof:

a)
$$\neg (A \lor B) \rightarrow \neg A \land \neg B$$

b) $\neg A \land \neg B \to \neg (A \lor B)$

Homework 5 (The Negative Fragment)

In this exercise, we consider the fragment of intuitionistic logic where the only logical operator is \rightarrow . We say that a formula A is negative if atomic formulas P only occur negated in A, i.e. in the form $P \rightarrow \bot (\neg P \text{ for short})$.

Show, by induction on A, that if A is negative, then:

$$\vdash \neg \neg A \to A$$

Hint: First show:

a)
$$\vdash \neg \neg \neg A \rightarrow \neg A$$

- b) $\vdash \neg \neg (A \rightarrow B) \rightarrow (\neg \neg A \rightarrow \neg \neg B)$
- c) $\vdash (\neg \neg A \rightarrow \neg \neg B) \rightarrow (A \rightarrow \neg \neg B)$