Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Brian Huffman and Peter Lammich Equational Logic Summer Term 2012 Exercise Sheet 2 April 27

Homework is due on May 4, before the tutorial.

Exercise 1 (H) (Termination)

Let \longrightarrow be a relation over the set \mathbb{N}^* of lists of natural numbers, defined as follows.

 $[n+1, n_1, \dots, n_k] \longrightarrow [n, n_1, \dots, n_k, n] \quad \text{for any } n, k, n_{1\dots k} \ge 0$ $[0, n_1, \dots, n_k] \longrightarrow [n_1, \dots, n_k] \quad \text{for any } k, n_{1\dots k} \ge 0$

Prove that \longrightarrow is terminating.

Exercise 2 (H) (Strict Order and Termination)

We define the *reverse dictionary ordering* on strings in $\{a, b\}^*$ such that $w_1 \longrightarrow w_2$ if and only if w_2 would come before w_1 in a dictionary. (We consider the empty string ε to be the first entry in the dictionary.) For example:

 $\mathbf{b} \longrightarrow \mathbf{a} \mathbf{b} \longrightarrow \mathbf{a} \mathbf{a} \longrightarrow \mathbf{a} \longrightarrow \boldsymbol{\varepsilon}$

- a) The following formal, inductive definition of \longrightarrow is incomplete. Add any missing rule(s) needed to complete the definition.
 - 1a. If $w_1 \longrightarrow w_2$, then $aw_1 \longrightarrow aw_2$. 1b. If $w_1 \longrightarrow w_2$, then $bw_1 \longrightarrow bw_2$. 2. $bw_1 \longrightarrow aw_2$
- b) Show that \longrightarrow is a strict partial order, i.e., that it is irreflexive, asymmetric, and transitive. Hint: As \longrightarrow is defined inductively, you can prove such properties by induction, with cases for each of the rules above.
- c) Show that \rightarrow is non-terminating, by demonstrating an infinite reduction sequence.

Exercise 3 (T) (Termination)

Show that the following programs, with variables over the natural numbers, terminate on all valid inputs.

a) ggT(m,n)

while
$$m \neq n$$
 do
if $m > n$ then $m := m - n$ else $n := n - m$

b) ggT(m, n)

while $m \neq n$ do if m > n then m := m - nelse begin h := m; m := n; n := h end

c) The function f, which is defined recursively as follows.

$$f(m, n, 0) = m + n$$

$$f(m, 0, k + 1) = f(m + k, 1, k)$$

$$f(m, n + 1, k + 1) = f(m + k, f(m + k, n, k + 1), k)$$

Exercise 4 (T) (Product Order)

Show that the lexicographic product $(A \times B, >_{A \times B})$ of the orders $(A, >_A)$ and $(B, >_B)$ is a total order, if $>_A$ and $>_B$ are total orders.

Exercise 5 (T) (Measure Function)

Let $(\{0,1\}^*, \longrightarrow)$ be the reduction system over strings from the alphabet $\{0,1\}$ with the single reduction rule $u1v0w \longrightarrow u0v1w$, where $u, v, w \in \{0,1\}^*$.

Give a measure function $\varphi : \{0,1\}^* \to \mathbb{N}$ showing that the reduction system terminates.