Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Johannes Hölzl and Lars Hupel

Exercise 34 (Termination)

Let $\Sigma = \{a, b, c, d\}$, with unary function symbols a, b und c and a constant symbol d. Show that the term rewriting system with the following rules terminates:

$$b(a(x)) \longrightarrow a(b^2(c(x)))$$
$$c(a(x)) \longrightarrow a(b(c^2(x)))$$
$$c(b(x)) \longrightarrow b(c(x))$$

Hint: Consider how the number of occurences of *as* changes in each step. Then regard the sequences of function symbols in between the *as* as strings.

Exercise 35 (Hilbert's 10th Problem (Exercise 5.8 of TRaAT))

Show that undecidability of Hilbert's 10th Problem implies that the following problem (TRaT Exercise 5.8) is undecidable:

- **Instance:** Two polynomials $P, Q \in \mathbb{N}[X_1, \dots, X_n]$ in *n* indeterminates with non-negative integer coefficients, and a (decidable) subset *A* of \mathbb{N} .
- **Question:** Does $P >_A Q$ hold, i.e. is the value of P greater than the value of Q for all valuations with elements in A.

Show that this implies that there exists a polynomial interpretation \mathcal{A} for which it is in general undecidable whether two terms l, r satisfy $l >_{\mathcal{A}} r$.

Homework 36 (Reduction Ordering)

Recall that a reduction ordering is a well-founded ordering on terms that is compatible with context and closed under substitutions. Now consider the subterm ordering $>_{ST}$, defined so that $s >_{ST} t$ iff t is a proper subterm of s.

- a) Show that $>_{ST}$ is no reduction ordering.
- b) Show that a term-rewriting system R with $R \subseteq >_{ST}$ always terminates. Here, $R \subseteq >_{ST}$ means that $l >_{ST} r$ for every rewrite rule $(l \longrightarrow r) \in R$.

Homework 37 (Polynomial Interpretation)

Use the polynomial interpretation \mathcal{A} with $A = \mathbb{N} - \{0, 1, 2\}$ and $P_f(X, Y) = X^2 + XY$ to show that the following term rewriting system terminates:

$$\{ f(f(x,y),z) \longrightarrow f(x,f(y,z)), f(x,f(y,z)) \longrightarrow f(y,y) \}$$

Homework 38 (Interpretation)

Prove termination of the following term rewriting system using the interpretation method:

$$\{f(f(x)) \longrightarrow f(g(f(x)))\}$$