LOGICS EXERCISE

TU München Institut für Informatik

PROF. TOBIAS NIPKOW DR. PETER LAMMICH SIMON WIMMER

SS 2016

EXERCISE SHEET 6

18.05.2016

Submission of Homework: Before tutorial on May 25

Exercise 6.1. [Decidable Theories]

Let S be a set of sentences (= closed formulas) such that S is closed under consequence: if $S \models F$ and F is closed, then $F \in S$. Additionally, assume that S is finitely axiomatizable and complete, i.e. $F \in S$ or $\neg F \in S$ for any sentence F.

- 1. Give a procedure for deciding wether $S \models F$ for a sentence F.
- 2. Can you obtain a similar result when the assumption is that the axiom system is only *recursively enumerable*?

Exercise 6.2. [Models of the $\exists^* \forall^*$ Class]

Consider the $\exists^* \forall^*$ class, i.e. formulas of the form

 $\exists x_1 \ldots \exists x_n \; \forall y_1 \ldots \forall y_m \; F$

where F is quantifier-free and contains no function symbols. Show that such a formula has a model iff it has a model of size n (assuming $n \ge 1$). What happens if we allow equality in F?

Exercise 6.3. [Ackermann Reduction]

Consider the fragment of (closed) formulas of the form $\forall x_1 \dots \forall x_n F$ where F involves no predicates besides equality but arbitrary function symbols. We want to study the Ackermann reduction, which yields a decision procedure for this class of formulas. For instance, let

$$F = (x_1 = x_2 \to f(f(x_1)) = f(g(x_2)))$$

We index the occurrences of each function symbol from the inside out

$$x_1 = x_2 \to \overbrace{f(\underbrace{f(x_1)}_{f_1})}^{f_2} = \overbrace{f(\underbrace{g(x_2)}_{g_1})}^{f_3}$$

and introduce a fresh variable for each instance. We add constraints which capture the congruence properties for all function symbols involved, and replace terms in the original formula by variables. This yields:

$$(x_1 = x_{f_1} \rightarrow x_{f_1} = x_{f_2} \land$$
$$x_{f_1} = x_{g_1} \rightarrow x_{f_2} = x_{f_3} \land$$
$$x_1 = x_{g_1} \rightarrow x_{f_1} = x_{f_3}) \rightarrow$$
$$(x_1 = x_2 \rightarrow x_{f_2} = x_{f_3})$$

- 1. Explain how this construction can be used to obtain a procedure for deciding *validity* of formulas from the given fragment.
- 2. Give a formal description of the reduction.
- 3. Prove correctness of the Ackermann reduction step in your decision procedure.

Homework 6.1. [Monadic FOL]

(5 points)

Show that deciding unsatisfiability of monadic FOL formulas can be reduced to deciding unsatisfiability of formulas from the $\exists^*\forall^*$ fragment. Use miniscoping!

Solution: Due to slide decision-problem/6, it's enough to show that after miniscoping no nested quantifiers remain.

We prove, by induction on the structure of the formula, that after miniscoping, for each sub-formula of the form $\forall x.F$ resp. $\exists x.F, F$ is a disjunction resp. conjunction of literals, each literal containing x free.

The only interesting cases are the quantifier cases. Assume we have a formula of the form $\exists x.F$, such that no miniscoping rules are applicable, and by induction hypothesis, below quantifiers in F there are only disjunctions/conjunctions of literals containing the bound variable.

As no miniscoping rules are applicable, F must be a conjunction of literals and quantified formulas, such that each conjunct contains x free. So assume F contains a quantified formula, i.e., $F = \ldots \land Qy.F' \land \ldots$ By induction hypothesis, F' is a disjunction/conjunction of literals, each literal containing y free. However, as we are in the monadic fragment, a literal can contain at most one free variable. Thus, F' cannot contain x free, which is a contradiction to F containing quantifiers. Thus, F only contains literals, and thus has the desired shape.

The case for $\forall x.F$ is analogously. qed.

Homework 6.2. $[\exists^*\forall^* \text{ With Equality}]$ (5 points) Show that unsatisfiability of formulas from the $\exists^*\forall^*$ fragment with equality is decidable. Hint: Reduce it to the $\exists^*\forall^*$ -fragment without equality.

Solution: Applying the reduction of equality to non-equality from the lecture only inserts some (isolated) \forall -quantifiers, thus preserving the $\exists^*\forall^*$ -fragment.

Homework 6.3. $[\exists^*\forall^2\exists^*]$ (5 points) Show how to reduce deciding unsatisfiability of formulas from the $\exists^*\forall^2\exists^*$ -fragment to deciding unsatisfiability of formulas from the $\forall^2\exists^*$ -fragment.

Solution: Using skolemization for the outer existential quantifiers preserves satisfiability, and replaces variables by skolem constants, i.e., introduces no function symbols of arity > 0. The resulting formula is obviously in the $\forall^2 \exists^*$ -fragment.

Homework 6.4. [Universal Closure] (5 points) Let F be a formula, and $\{x_1, \ldots, x_n\}$ the free variables in F. We define the *universal closure* of F by $\forall F := \forall x_1 \ldots \forall x_n F$.

Let S be a set of closed formulas, and F be a formula. Show that $S \models F$ iff $S \models \forall F$.

Is it also true that $S \models F$ iff $S \models \exists F$, where $\exists F$ is defined analogously to $\forall F$. Proof or counterexample!

Solution: As S is closed, in any model of S, the bindings for the free variables of F can be changed arbitrarily without changing the model property. This implies the \implies direction of the first part. The reverse direction is trivial.

The second part does not hold, consider, for example $P(c) \models \exists x(P(x) \land P(c))$, which does hold, as x can always be chosen to have the same value as c. However, $P(c) \models P(x) \land P(c)$ does not hold, as x may be bound to some value for which P does not hold.