	Logics Exercise	
	TU München Institut für Informatik	Prof. Tobias Nipkow Lars Hupel
SS 2018	Exercise Sheet 1	10.04.2018

Submission of homework: Before tutorial on 17.04.2018. Until further notice, homework has to be submitted in groups of two students.

You have to achieve a minimum combined score of 50% on your homeworks to be granted a grade bonus on the final exam, provided that the exam is passed.

Exercise 1.1. [Short Questions]

Let M be a set of formulas, and let F and G be formulas. Which of the following assertions hold?

- 1. If F satisfiable then $M \models F$
- 2. F is valid iff $\top \models F$
- 3. If $\models F$ then $M \models F$
- 4. If $M \models F$ then $M \cup \{G\} \models F$
- 5. $M \models F$ and $M \models \neg F$ cannot hold simultaneously
- 6. If $M \models G \rightarrow F$ and $M \models G$ then $M \models F$

Exercise 1.2. [Coincidence Lemma]

Assume that for all atomic formulas A_i in F, $\mathcal{A}(A_i) = \mathcal{A}'(A_i)$. Show that

$$\mathcal{A} \models F \text{ iff } \mathcal{A}' \models F$$

Exercise 1.3. [Semantic Proof]

Let $\models F \to G$ where F and G do not share any atoms. Show that then F is unsatisfiable or G is a tautology (or both). *Hint:* you may want to use the previous result.

Homework 1.1. [CNF and DNF]

(6 points)

Use the rewriting-based procedure from the lecture to convert the following formulas F and G first to NNF, and then to CNF and DNF. Document each rewriting step.

$$F = \neg \neg (\neg A_1 \land \neg \neg (A_2 \lor A_3)) \qquad G = (A_1 \lor A_2 \lor A_3) \land (\neg A_1 \lor \neg A_2)$$

Homework 1.2. [Basic equivalences]

(8 points)

Let F and G be formulas. Are the following statements equivalent? Proof or counterexample!

1.
$$\models F \leftrightarrow G$$

2.
$$F \equiv G$$

How about these two statements?

- 1. F is valid
- 2. $F \equiv \top$

Homework 1.3. [Efficient CNF satisfiability check]

(6 points)

In general, solving satisfiability for CNF formula is a hard problem. Consider the special case where clauses may only contain up to two literals. Give an efficient algorithm to check satisfiability.