LOGICS EXERCISE

TU München Institut für Informatik

Prof. Tobias Nipkow Lars Hupel

SS 2018

EXERCISE SHEET 3

24.04.2018

Submission of homework: Wednesday 02.05.2018, before noon; either via email or on paper in the TA's office (MI 00.09.063). Until further notice, homework has to be submitted in groups of two students.

Exercise 3.1. [System G1c]

An alternative definition of the sequent calculus ("G1c") is defined as follows:

Axioms

Ax
$$A \Rightarrow A$$
 $L \perp \perp \Rightarrow$

Rules for weakening (W) and contraction (C)

LW $\frac{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta}$	$\operatorname{RW} \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A}$
$\operatorname{LC} \frac{A, A, \Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta}$	$\operatorname{RC} \frac{\Gamma \Rightarrow \Delta, A, A}{\Gamma \Rightarrow \Delta, A}$

Rules for the logical operators

$$\begin{split} \mathcal{L}\wedge & \frac{A_i, \Gamma \Rightarrow \Delta}{A_0 \wedge A_1, \Gamma \Rightarrow \Delta} \ (i=0,1) & \mathbb{R}\wedge \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B} \\ \mathcal{L}\vee & \frac{A, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta} & \mathbb{R}\vee \frac{\Gamma \Rightarrow \Delta, A_i}{\Gamma \Rightarrow \Delta, A_0 \vee A_1} \ (i=0,1) \\ \mathcal{L}\rightarrow & \frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \to B, \Gamma \Rightarrow \Delta} & \mathbb{R}\rightarrow \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \to B} \end{split}$$

Notably, weaking and contraction are built-in rules. Show that sequent calculus can be simulated by G1c, i.e., $\vdash_G \Gamma \Rightarrow \Delta$ implies $\vdash_{G1c} \Gamma \Rightarrow \Delta$.

Solution:

We consider two rules, $\wedge L$ and $\neg R$. We show how those can be simulated in G1c.

$$\begin{array}{c} L \wedge \displaystyle \frac{\mathbf{F}, \mathbf{G}, \Gamma \Rightarrow \mathbf{\Delta}}{F, F \wedge G, \Gamma \Rightarrow \Delta} \\ L \wedge \displaystyle \frac{F, F \wedge G, \Gamma \Rightarrow \Delta}{F \wedge G, F \wedge G, \Gamma \Rightarrow \Delta} \end{array} \qquad \qquad \begin{array}{c} \mathrm{RW} \displaystyle \frac{\mathbf{F}, \Gamma \Rightarrow \mathbf{\Delta}}{F, \Gamma \Rightarrow \bot, \Delta} \\ R \rightarrow \displaystyle \frac{F, \Gamma \Rightarrow \bot, \Delta}{\Gamma \Rightarrow \Gamma \Rightarrow \bot, \Delta} \end{array}$$

LOGICS

Exercise 3.2. [Cut Elimination, Semantically]

Semantically prove the admissibility of the following rule:

If
$$\vdash_G \Gamma \Rightarrow F, \Delta$$
 and $\vdash_G F, \Gamma \Rightarrow \Delta$ then $\vdash_G \Gamma \Rightarrow \Delta$

Solution:

To prove this semantically, we have to show that given $|\Gamma \Rightarrow F, \Delta|$ and $|F, \Gamma \Rightarrow \Delta|, |\Gamma \Rightarrow \Delta|$ holds. In this case, an even stronger property holds: precedent and antecedent are equivalent. That is, $(G \rightarrow F \lor D) \land (F \land G \rightarrow D) \equiv G \rightarrow D$. We can prove this with sequent calculus:¹

$ \frac{\overline{G, F \vdash F, D}}{\operatorname{G, G \rightarrow F v D \vdash F, D}}_{G, G \rightarrow F v D \vdash F, D}^{(vl)} \xrightarrow{(vl)}_{(\rightarrow l)} \frac{G, G \rightarrow F v D \vdash G, D}{G, G \rightarrow F v D \vdash G, D}_{(\wedge r)} $	
$G, G \to F \vee D \vdash F \land G, D \qquad $	v D, D ⊢ D
$G, G \to F \lor D, F \land G \to D \vdash D $	
$G, (G \to F \lor D) \land (F \land G \to D) \vdash D$	
$(G \to F \lor D) \land (F \land G \to D) \vdash G \to D $	
$\vdash (G \to F \lor D) \land (F \land G \to D) \to G \to D $	

The other direction is similar:²

$\overline{G \vdash G, F, D}$ $\overline{G, D \vdash F, D}$	$\overline{F, G \vdash G, D} \qquad \overline{F, G, D \vdash D} $	
$G, G \rightarrow D \vdash F, D$	$F, G, G \to D \vdash D $	
$G, G \rightarrow D \vdash F \lor D$	$F \land G, G \to D \vdash D \qquad (\land I)$	
$G \to D \vdash G \to F \lor D$	$G \to D \vdash F \land G \to D $	
$G \to D \vdash (G \to F \lor D) \land (F \land G \to D)$		
$\vdash (G \to D) \to (G \to F \lor D) \land (F \land G \to D)$		

¹http://logitext.mit.edu/proving/+.28G+.2D.3E+F+.5C.2F+D.29+.2F.5C+.28F+.2F.5C+G+.2D. 3E+D.29+.2D.3E+.28G+.E2.86.92+D.29

²http://logitext.mit.edu/proving/.28G+.2D.3E+D.29+.2D.3E+.28.28G+.2D.3E+F+.5C.2F+D.29+ .2F.5C+.28F+.2F.5C+G+.2D.3E+D.29.29

Exercise 3.3. [More Connectives]

Define sequent rules for the logical connectives "nand" $(\overline{\wedge})$ and "xor" (\otimes) .

Solution:

The simplest way to derive the sequent rules is to consider the definition of $\overline{\wedge}$ and \otimes .

$$F \overline{\wedge} G \equiv \neg (F \wedge G)$$
$$F \otimes G \equiv (F \wedge \neg G) \lor (\neg F \wedge G)$$

One can apply sequent calculus rules on the right-hand sides and simplify accordingly.

$$\overline{\wedge}L \ \frac{\Gamma \Rightarrow \Delta, F}{\Gamma, F \overline{\wedge} G \Rightarrow \Delta} \qquad \overline{\wedge}R \ \frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, F \overline{\wedge} G} \\ \otimes L \ \frac{\Gamma, F \Rightarrow \Delta, G}{\Gamma, F \otimes G \Rightarrow \Delta} \qquad \otimes R \ \frac{\Gamma \Rightarrow \Delta, F, G}{\Gamma \Rightarrow \Delta, F \otimes G}$$

Exercise 3.4. [Intermediate Formulas]

Let F, G be formulas such that $F \models G$. Prove that there is an *intermediate formula* H such that the following three conditions hold:

- 1. H contains only atomic formulas that occur in both F and G
- 2. $F \models H$
- 3. $H \models G$

How can H be constructed?

Solution:

This theorem is called "Craig's interpolation theorem". We call H the *interpolant*.

The proof proceeds by induction on the number of elements n in $\operatorname{atoms}(F) \setminus \operatorname{atoms}(G)$.

• Base case: n = 0.

Hence, $|\operatorname{atoms}(F) \setminus \operatorname{atoms}(G)| = 0$. Hence, $\operatorname{atoms}(F) \subseteq \operatorname{atoms}(F) \cap \operatorname{atoms}(G)$. F is a suitable interpolant.

• Inductive step: $n \rightsquigarrow n+1$.

There is at least an atomic formula A such that $A \in \operatorname{atoms}(F)$ but $A \notin \operatorname{atoms}(G)$. We define a new formula F' that is the disjunction of F where A is replaced with \top and F where A is replaced with \perp :

$$F' = F[\top/A] \lor F[\bot/A]$$

Intuitively, F' is a "case distinction" on A. Observe that $A \notin \operatorname{atoms}(F')$. Also, $|\operatorname{atoms}(F') \setminus \operatorname{atoms}(G)| = n$.

Use the induction hypothesis to obtain an interpolant H for F' and G with $F' \models H$ and $H \models G$.

We need to show that $F \models H$. This is trivial because $F \models F'$.

Homework 3.1. [Sequent Calculus] Prove the formula $((A \to \bot) \to A) \to A$ in System G1c.	(2 points)
Homework 3.2. [Inversion Rules] Show that the following inversion rules are admissible:	(6 points)

$$\frac{F \land G, \Gamma \Rightarrow \Delta}{F, G, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow F \to G, \Delta}{F, \Gamma \Rightarrow G, \Delta}$$

Homework 3.3. [Sequent Prover] (12 points) Implement a sequent calculus prover in a high-level programming language, and test it for examples from this exercise sheet, the lecture, or your own.

Submission: Source code for prover and tests, README file containing instructions for how to build the prover and reproduce the tests; by email to hupel@in.tum.de. Allowed languages are: Haskell, OCaml, Java, Scala, Rust, Prolog, C++, Python. Only the standard library (i.e. no additional packages) may be used.

LOGICS