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Submission of homework: Wednesday 02.05.2018, before noon; either via email or
on paper in the TA’s office (MI 00.09.063). Until further notice, homework has to be
submitted in groups of two students.

Exercise 3.1. [System G1c]
An alternative definition of the sequent calculus (“G1c”) is defined as follows:

Notably, weaking and contraction are built-in rules. Show that sequent calculus can be
simulated by G1c, i.e., `G Γ⇒ ∆ implies `G1c Γ⇒ ∆.

Solution:
We consider two rules, ∧L and ¬R. We show how those can be simulated in G1c.

LC

L∧
L∧

F,G,Γ⇒∆

F, F ∧G,Γ⇒ ∆

F ∧G,F ∧G,Γ⇒ ∆

F ∧G,Γ⇒∆

R→
RW

F,Γ⇒∆

F,Γ⇒ ⊥,∆
Γ⇒ F → ⊥,∆

Γ⇒ ¬F,∆
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Exercise 3.2. [Cut Elimination, Semantically]
Semantically prove the admissibility of the following rule:

If `G Γ⇒ F,∆ and `G F,Γ⇒ ∆ then `G Γ⇒ ∆

Solution:
To prove this semantically, we have to show that given |Γ⇒ F,∆| and |F,Γ⇒ ∆|, |Γ⇒ ∆|
holds. In this case, an even stronger property holds: precedent and antecedent are equivalent.
That is, (G→ F ∨D)∧ (F ∧G→ D) ≡ G→ D. We can prove this with sequent calculus:1

The other direction is similar:2

1http://logitext.mit.edu/proving/+.28G+.2D.3E+F+.5C.2F+D.29+.2F.5C+.28F+.2F.5C+G+.2D.

3E+D.29+.2D.3E+.28G+.E2.86.92+D.29
2http://logitext.mit.edu/proving/.28G+.2D.3E+D.29+.2D.3E+.28.28G+.2D.3E+F+.5C.2F+D.29+

.2F.5C+.28F+.2F.5C+G+.2D.3E+D.29.29

http://logitext.mit.edu/proving/+.28G+.2D.3E+F+.5C.2F+D.29+.2F.5C+.28F+.2F.5C+G+.2D.3E+D.29+.2D.3E+.28G+.E2.86.92+D.29
http://logitext.mit.edu/proving/+.28G+.2D.3E+F+.5C.2F+D.29+.2F.5C+.28F+.2F.5C+G+.2D.3E+D.29+.2D.3E+.28G+.E2.86.92+D.29
http://logitext.mit.edu/proving/.28G+.2D.3E+D.29+.2D.3E+.28.28G+.2D.3E+F+.5C.2F+D.29+.2F.5C+.28F+.2F.5C+G+.2D.3E+D.29.29
http://logitext.mit.edu/proving/.28G+.2D.3E+D.29+.2D.3E+.28.28G+.2D.3E+F+.5C.2F+D.29+.2F.5C+.28F+.2F.5C+G+.2D.3E+D.29.29
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Exercise 3.3. [More Connectives]
Define sequent rules for the logical connectives “nand” (Z) and “xor” (⊗).

Solution:
The simplest way to derive the sequent rules is to consider the definition of Z and ⊗.

F ZG ≡ ¬(F ∧G)

F ⊗G ≡ (F ∧ ¬G) ∨ (¬F ∧G)

One can apply sequent calculus rules on the right-hand sides and simplify accordingly.

ZL
Γ⇒ ∆, F Γ⇒ ∆, G

Γ, F ZG⇒ ∆
ZR

Γ, F,G⇒ ∆

Γ⇒ ∆, F ZG

⊗L
Γ, F ⇒ ∆, G Γ, G⇒ ∆, F

Γ, F ⊗G⇒ ∆
⊗R

Γ⇒ ∆, F,G Γ, F,G⇒ ∆

Γ⇒ ∆, F ⊗G

Exercise 3.4. [Intermediate Formulas]
Let F,G be formulas such that F |= G. Prove that there is an intermediate formula H such
that the following three conditions hold:

1. H contains only atomic formulas that occur in both F and G

2. F |= H

3. H |= G

How can H be constructed?

Solution:
This theorem is called “Craig’s interpolation theorem”. We call H the interpolant.

The proof proceeds by induction on the number of elements n in atoms(F ) \ atoms(G).

• Base case: n = 0.

Hence, |atoms(F ) \ atoms(G)| = 0. Hence, atoms(F ) ⊆ atoms(F ) ∩ atoms(G). F is a
suitable interpolant.

• Inductive step: n ; n + 1.

There is at least an atomic formula A such that A ∈ atoms(F ) but A 6∈ atoms(G). We
define a new formula F ′ that is the disjunction of F where A is replaced with > and
F where A is replaced with ⊥:

F ′ = F [>/A] ∨ F [⊥/A]

Intuitively, F ′ is a “case distinction” on A. Observe that A 6∈ atoms(F ′). Also,
|atoms(F ′) \ atoms(G)| = n.

Use the induction hypothesis to obtain an interpolant H for F ′ and G with F ′ |= H
and H |= G.

We need to show that F |= H. This is trivial because F |= F ′.
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Homework 3.1. [Sequent Calculus] (2 points)
Prove the formula ((A→ ⊥)→ A)→ A in System G1c.

Homework 3.2. [Inversion Rules] (6 points)
Show that the following inversion rules are admissible:

F ∧G,Γ⇒ ∆

F,G,Γ⇒ ∆

Γ⇒ F → G,∆

F,Γ⇒ G,∆

Homework 3.3. [Sequent Prover] (12 points)
Implement a sequent calculus prover in a high-level programming language, and test it for
examples from this exercise sheet, the lecture, or your own.

Submission: Source code for prover and tests, README file containing instructions for how to
build the prover and reproduce the tests; by email to hupel@in.tum.de. Allowed languages
are: Haskell, OCaml, Java, Scala, Rust, Prolog, C++, Python. Only the standard library
(i.e. no additional packages) may be used.


