
Verifying the seL4 Microkernel
Formal Proof in Mathematics and Computer Science

Lukas Stevens
21st June 2018



Outline

1. What is a µ-kernel?

2. Design process of seL4

3. Formal methods of the correctness proof

4. Layers of the correctness proof

5. Conclusion

1



What is a µ-kernel?



What is a kernel anyway?

• Necessary abstractions for applications
• Interaction via system calls
• Loaded into protected memory region
⇒ Bugs are potentially fatal

2



What is a kernel anyway?

• Necessary abstractions for applications

• Interaction via system calls
• Loaded into protected memory region
⇒ Bugs are potentially fatal

2



What is a kernel anyway?

• Necessary abstractions for applications
• Interaction via system calls

• Loaded into protected memory region
⇒ Bugs are potentially fatal

2



What is a kernel anyway?

• Necessary abstractions for applications
• Interaction via system calls
• Loaded into protected memory region

⇒ Bugs are potentially fatal

2



What is a kernel anyway?

• Necessary abstractions for applications
• Interaction via system calls
• Loaded into protected memory region
⇒ Bugs are potentially fatal

2



Definition: Microkernel

A concept is tolerated inside the µ-kernel only if mov-
ing it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation
of the system’s required functionality.

— Jochen Liedtke

3



Monolithic kernels and µ-kernels

Device Drivers

File System

IPC, Virtual Memory, Scheduling

etc. Basic IPC, Virtual Memory, Scheduling

UNIX-
Server

Device
Drivers

File
System

Application
IPC

Applications

Hardware Hardware

OS based on
Monolithic Kernel

OS based on
Microkernel

Applications

User
Mode

Kernel 
mode

4



The seL4 µ-kernel

• Member of the L4 µ-kernel family
• Correctness verified with Isabelle
• High performance

5



The seL4 µ-kernel

• Member of the L4 µ-kernel family

• Correctness verified with Isabelle
• High performance

5



The seL4 µ-kernel

• Member of the L4 µ-kernel family
• Correctness verified with Isabelle

• High performance

5



The seL4 µ-kernel

• Member of the L4 µ-kernel family
• Correctness verified with Isabelle
• High performance

5



Design process of seL4



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof Proof

Implementation

Implementation Design Improvement

Automatic
Translation

Stage 1Stage 2

6



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof Proof

Implementation

Implementation Design Improvement

Automatic
Translation

Stage 1

Stage 2

6



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof Proof

Implementation

Implementation Design Improvement

Automatic
Translation

Stage 1

Stage 2

6



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof Proof

Implementation

Implementation Design Improvement

Automatic
Translation

Stage 1

Stage 2

6



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof

Proof

Implementation

Implementation

Design Improvement

Automatic
Translation

Stage 1

Stage 2

6



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof

Proof

Implementation

Implementation

Design Improvement

Automatic
Translation

Stage 1Stage 2

6



Design process for verification

Requirements

Haskell
Prototype

Executable
Specification

Abstract
Specification

C imple-
mentation

Proof Proof

Implementation

Implementation Design Improvement

Automatic
Translation

Stage 1Stage 2

6



Formal methods of the
correctness proof



Hoare logic

P︷ ︸︸ ︷
{x = 1}

C︷ ︸︸ ︷
x := x + 1

Q︷ ︸︸ ︷
{x = 2}

7



More Hoare logic

{x = 0 ∧ x = 1} y := 2 ∗ x {

x and y are even

}

8



More Hoare logic

{x is even} y := 2 ∗ x {

x and y are even

}

8



More Hoare logic

{x is even} y := 2 ∗ x {x and y are even}

8



Partial correctness of Hoare logic

{ } WHILE true DO c { }

9



Data refinement

A concrete system C refines an abstract specification A if the
behaviour of C is contained in that of A.

10



Data refinement

A concrete system C refines an abstract specification A if the
behaviour of C is contained in that of A.

10



Data refinement: Examples

• The scheduler selects runnable threads
• System calls return non-zero values on error

11



Layers of the correctness proof



Proof structure

Executable Specification

Abstract Specification

C implementation (Semantics)

Haskell prototype

C implementation

Isabelle/HOL

Proof

Automatic translation

12



Abstract specification

The abstract specification is the most high-level layer still fully
encapturing the behaviour of the kernel.

13



Scheduler on the abstract level

schedule ≡ do
threads ← all_active_tcbs;
thread ← select threads;
switch_to_thread thread

od OR switch_to_idle_thread

14



Executable specification

Fill in the details left open by the abstract specification.

15



Haskell implementation of the scheduler

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread' (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread' prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread'' q

chooseThread'' thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Get runnable thread with highest
priority using chooseThread' or
schedule idle thread.

Call chooseThread to select next
thread.

Try to find runnable thread in
Queue.

Check if thread is runnable and act
accordingly.

16



Haskell implementation of the scheduler

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread' (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread' prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread'' q

chooseThread'' thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Get runnable thread with highest
priority using chooseThread' or
schedule idle thread.

Call chooseThread to select next
thread.

Try to find runnable thread in
Queue.

Check if thread is runnable and act
accordingly.

16



Haskell implementation of the scheduler

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread' (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread' prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread'' q

chooseThread'' thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Get runnable thread with highest
priority using chooseThread' or
schedule idle thread.

Call chooseThread to select next
thread.

Try to find runnable thread in
Queue.

Check if thread is runnable and act
accordingly.

16



Haskell implementation of the scheduler

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread' (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread' prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread'' q

chooseThread'' thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Get runnable thread with highest
priority using chooseThread' or
schedule idle thread.

Call chooseThread to select next
thread.

Try to find runnable thread in
Queue.

Check if thread is runnable and act
accordingly.

16



Haskell implementation of the scheduler

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread' (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread' prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread'' q

chooseThread'' thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Get runnable thread with highest
priority using chooseThread' or
schedule idle thread.

Call chooseThread to select next
thread.

Try to find runnable thread in
Queue.

Check if thread is runnable and act
accordingly.

16



C implementation

Translate the Haskell implementation to C.

17



Machine Model

invalidateTLB :: unit machine_m => unit machine_m

invalidateCacheRange ::
unit machine_m => word => word => unit machine_m

18



Data refinement for state machines

σ1 σ2 σn

s1 s2 sn

· · ·

Abstract operations in M1

State
relationSt

at
e

re
lat

io
n

· · ·

Concrete operations in M2

19



Data refinement for state machines

σ1 σ2 σn

s1 s2 sn

· · ·

Abstract operations in M1

State
relationSt

at
e

re
lat

io
n

· · ·

Concrete operations in M2

19



Data refinement for state machines

σ1 σ2 σn

s1 s2 sn

· · ·

Abstract operations in M1

State
relationSt

at
e

re
lat

io
n

· · ·

Concrete operations in M2

19



Data refinement for state machines

σ1 σ2 σn

s1 s2 sn

· · ·

Abstract operations in M1

State
relationSt

at
e

re
lat

io
n

· · ·

Concrete operations in M2

19



Refinement by forward simulation

σ σ′

s s′

St
at

e
Re

lat
io

n State
Relation

Abstract Operation in M1

Concrete Operation in M2

20



Example for forward simulation

On the Board

21



Types of state transitions

Kernel
Mode

User
Mode

Idle
Mode

22



Main result

MA

ME

MC

refines

refines

re
fin

es

23



Main result

MA

ME

MC

refines

refines

re
fin

es

23



Main result

MA

ME

MC

refines

refines

re
fin

es

23



Conclusion



Expenditure of time

Artefact Effort (py) Total (py)

Haskell impl. 2.0 2.2
C impl. 0.2

Generic framework 9.0

20.5
Abstract spec. 0.3
Executable spec. 0.2

Refinement MA ↔ME 8.0
Refinement ME ↔MC 3.0

24



How does the effort compare?

• EAL7: 1000$/LOC ↔ seL4: 370$/LOC
• L4 Pistachio kernel: 6 py ↔ seL4 kernel: 2.2 py

25



How does the effort compare?

• EAL7: 1000$/LOC ↔ seL4: 370$/LOC

• L4 Pistachio kernel: 6 py ↔ seL4 kernel: 2.2 py

25



How does the effort compare?

• EAL7: 1000$/LOC ↔ seL4: 370$/LOC
• L4 Pistachio kernel: 6 py ↔ seL4 kernel: 2.2 py

25



Changes due to verification

0 100 200 300 400 500 600

C

Spec

1654

34

144

44250250

Bugs VC
Bugs VC
Bugs

Refinement 1
Refinement 2
Testing

26



What was achieved?

• Correctness proof down to binary level
• Trust in hardware

• What about Spectre and Meltdown?

27



What was achieved?

• Correctness proof down to binary level
• Trust in hardware
• What about Spectre and Meltdown?

27



The future of seL4

• More architectures
• Multicore support

• Exclude timing-channel attacks

28



The future of seL4

• More architectures
• Multicore support
• Exclude timing-channel attacks

28



Questions?

28


	What is a -kernel?
	Design process of seL4
	Formal methods of the correctness proof
	Layers of the correctness proof
	Conclusion

