
SMT - Bit Vectors

Florian Märkl

June 26, 2020

Abstract

Due to how real computers are designed, SMT formulas built on unbounded integers are
generally unsuited for deciding properties on program code and instead, sequences of bits,
called bit vectors, are used to represent machine integers. After establishing a calculus for
SMT formulas on such data, this document elaborates on how these can be automatically
decided by using the flattening approach to translate them into propositional logic, which can
be solved by any SAT solver. This approach is extended to incremental flattening, which is
able to decide certain types of formulas significantly faster. For these processes, an exemplarily
implementation in Haskell is developed, which is finally being used to solve a small CrackMe-
challenge as an example application.

1 Motivation
Satisfiability modulo theories (SMT), the problem of deciding the satisfiability of a formula in
first-order logic, plays a major role in the field of program analysis where the semantics of real
machine code is transformed in a way such that an SMT solver can decide certain properties of
the underlying code. Coming from a mathematical background, SMT formulas are commonly
built upon data types such as unbounded natural numbers, however this is often not suitable for
real-world machine code, as the following example demonstrates:

uint8_t a = 200;
uint8_t b = a + 98;
assert(b > a);

If a and b were able to hold any natural number, the assertion b > a would obviously hold, but
since this code only uses 8-bit unsigned integers, an overflow occurs in the addition, b gets assigned
the value 42 and the assertion fails.

In order to be able to accurately represent such semantics in SMT, formulas based on sequences
of bits with a fixed length, called bit vectors, can be used. We define one variant of syntax and
semantics for such formulas, then depict how satisfiability for them can be decided using the
flattening approach while developing an example implementation in Haskell. Finally, we practically
use our implementation to solve a small "Capture The Flag"-like CrackMe challenge.

1.1 Info about Code Listings
The code shown in this document is heavily simplified Haskell-like pseudocode, but closely follows
the structure of the accompanying implementation. Namings of functions and variables have been
kept identical wherever appropriate to allow conveniently finding the correspondents in the real
code.

1

2 Definitions
Our syntax for bit vector formulas closely follows the definitions given in [4], however we will
slightly deviate from their semantics.

formula → formula ∧ formula | ¬formula | (formula) | atom
atom → term < term | term = term | term [cons tan t]
term → term op term | var− i d e n t i f i e r | ∼term | cons tan t

| atom ? term : term | term [cons tan t : cons tan t] | ext (term)
op → + | − | · | / | � | � | & | | | ⊕ | ◦

It is crucial to understand the idea behind the separation into term, atom and formula as it is
essential to the solving approach later:

Term is any construct that would yield a bitvector if it were evaluated.

Atom is a construct that yields a boolean value, but by itself is not built by combination of other
boolean operations and is thus indivisible ("atomic") with respect to propositional logic.

Formula is the top-level entity that describes one entire problem to solve.

As already hinted by this distinction, the calculus is statically typed. While formulas and atoms
are boolean, every term has a bit vector type consisting of a fixed size (i.e. the count of bits in the
vector) and the information of whether the value is interpreted as signed or unsigned. Where not
directly obvious, we explicitly specify the type of an expression a by e.g. au32 or as64 where u and
s stand for signed and unsigned, and the number specifies the size of the vector. To directly use
the size of an expression a as a number, we write size(a).

2.1 Semantics
When interpreted as integer values, bit vectors express their value in Base-2. Signed vectors use
the two’s complement as this is the de-facto standard of encoding numbers in binary.

Semantics of operations on such values are defined as follows. Binary operators are only defined
when both operands have the same type, unless explicitly stated otherwise.

Syntax Semantics Resulting Type
a ∧ b
¬a
a < b
a = b

Common meaning of conjunction, negation, compari-
son and equality. < also considers the signedness of its
operands.

Boolean.

a[i] Picks the i-th bit out of a and interprets it as boolean. Boolean.
a | b
a & b
a ⊕ b

Bitwise operators for or, and and xor. Same bit vector type as
operands.

∼a Complement, i.e. negation of all bits in a. Same bit vector type as a.
a � b
a � b

Shift the bits in a by b digits to the left or right, respec-
tively, filling up with zeroes.
To enforce a meaningful definition of the result, we re-
strict the sizes of a and b to size(a) = 2size(b), as well
as only allow unsigned types for b. This means that b’s
type covers exactly the range of numbers addressing bits
in a.

Same bit vector type as a.

2

a + b
a − b
a · b
a / b

Arithmetic operations of addition, subtraction, multi-
plication and division, respecting the signedness of their
operands.

Same bit vector type as
operands.

ext(a) Extends a to a larger size, preserving its interpreted
integer value. Newly added higher bits are filled with
zeroes if a is unsigned or repeatedly a[size(a)− 1] if it is
signed.

Bit vector of the same
signedness as a. The size
must be explicitly speci-
fied.

a ◦ b Concatenation of a and b where a fills the lower and b
the higher bits.

Bit vector of size size(a)+
size(b). The signedness
must be explicitly speci-
fied.

a[b :c] Slice, i.e. a sub-vector of a where b specifies the offset
and and c the size in a.

Bit vector of size c. The
signedness must be ex-
plicitly specified.

c?a:b Ternary operator, takes the value of a if the atom c
evaluates to true, or b otherwise.

Same bit vector type as a
and b.

3 Flattening
One approach to decide bit vector formulas is called bit-blasting or flattening and is specified in [4].
The idea for deciding a bit vector formula f is to generate a formula p in propositional logic, i.e.
one consisting only of boolean entities, that is equisatisfiable to f . This means that p is satisfiable
if and only if f is satisfiable. This propositional formula can then be decided by any generic SAT
solver. Furthermore, p is generated in a way that directly maps some of its propositional variables
to bits of the original bit vector variables in f , so when a concrete satisfying assignment for p has
been found, a satisfying assignment for f can be directly inferred.

3.1 High-Level Algorithm
The algorithm starts by collecting all atoms and terms occuring in a given formula f , including
any term being part of another, as well as atoms being part of any ternary operator term. It then
reserves a single propositional variable for each atom and every bit of each term.

The propositional formula p is then constructed upon these variables as a conjunction of the
following constraints derived from f :

• One for each term appearing anywhere in f , restricting its bits with respect to its definition
and children.

• One for each atom appearing anywhere in f , restricting its value with respect to its definition
and children.

• One, called skeleton, for the overall formula, bringing its atoms in relation.

Figure 1 illustrates the resulting relations between terms, atoms, constraints and propositional
variables for an example formula.

3

a < 011 a < 010011 a 010
0 1 1 0 1 0

Constraint Constraint

Constraint (Skeleton)

Figure 1: Abstract illustration of the reserved propositional variables (green) per atom (blue) and
term (red), along with the constraints imposed by the flattening algorithm when deciding the
formula a < 011 ∧ ¬a < 010.

This process can be expressed formally as the following pseudocode, which our Haskell implemen-
tation is directly based on:

flatten :: Formula -> Propositional.Formula
flatten f =

let
termProps = reserveVarsForAll (terms f)
atomProps = reserveVarsForAll (atoms f)
termConstraints = {termConstraint atomProps termProps term | term ∈ (terms f)}
atomConstraints = {atomConstraint atomProps termProps atom | atom ∈ (atoms f)}
skel = skeleton atomProps f

in (skel ∪ termConstraints ∪ atomConstraints)

Finally, we can solve the generated formula with a SAT solver and derive values for our bit vector
variables. We use the minisat-solver [6] package, which exposes bindings to minisat [5].

solve :: Formula -> SolveResult
solve f =

let
flat = flatten f
satSolution = SAT.MiniSat.solve flat

in reconstructResult satSolution

What is left now is to construct the skeleton and constraints for atoms and terms in a way that
they correctly represent the semantics specified in section 2.1.

3.2 Skeleton
The skeleton is constructed trivially from the top-level formula structure by substituting atoms
by their reserved single propositional variable and converting negation and conjunction to their
correspondents in propositional logic, which yields three cases in the following pseudocode:

skeleton :: (Map Atom -> Propositional.Variable) -> Formula -> Propositional.Formula
skeleton atomProps (Atom atom) = atomProps[atom]
skeleton atomProps (¬f) = ¬(skeleton atomProps f)
skeleton atomProps (l ∧ r) = (skeleton atomProps l) ∧ (skeleton atomProps r)

3.3 Term and Atom Constraints
Constraints for terms and atoms are more involved than the skeleton. In essence, they directly
describe the semantics of the respective bit vector operations on the bits of their operands in the
propositional logic theory.

4

3.3.1 Bitwise Operations and Equality

Bitwise operations, i.e. and, or, xor and complement, are fairly straightforward to express as the
value of each bit of the resulting term is dependent only on one known bit of all operands. As an
example, we can implement bitwise xor by the following constraint:

(l ⊕ r)[i]⇐⇒ (l[i]⊕ r[i]) (1)

Equality follows a similar scheme as bitwise operations, but combines all compared bits to a single
conjunction:

(l = r)⇐⇒
∧
i

(l[i]⇐⇒ r[i]) (2)

3.3.2 Addition, Subtraction and Comparison

Full Adder

⊕

⊕

∧

∧

∨

a b

cin

s

c

Figure 2: Full adder circuit, adding two bits together while considering an incoming carry and
producing a result and outgoing carry bit.

Addition can be implemented by combining basic logic circuits, as also commonly found in elec-
tronics. We start by defining a full adder, which takes two input bits a and b along with one
incoming carry bit cin and outputs the resulting sum s and carry bit c, depicted in fig. 2 and
written as logic functions as:

s(a, b, cin) = cin⊕ (a⊕ b)

c(a, b, cin) = (a ∧ b) ∨ ((a⊕ b) ∧ cin)
(3)

Multiple full adder circuits can eventually be combined into a ripple-carry adder for operating on
more than one digit, as seen in fig. 3. Directly translating this circuit into formulas in propositional
logic yields:

carry(l, r, cin)[0] = cin

carry(l, r, cin)[i+ 1] = cout(l[i+ 1], r[i+ 1], carry(cin, l, r)[i])

sum(l, r, cin)[i] = s(l[i], r[i], carry(l, r, cin)[i])

(4)

5

Full
Adder

Full
Adder

Full
Adder

Full
Adder

l[3]

r[3]

l[2]

r[2]

l[1]

r[1]

l[0]

r[0]

sum[3] sum[2] sum[1] sum[0]

carry[4] carry[0] = cin

+

=

carry[3] carry[2] carry[1]

Figure 3: Ripple-carry adder, combining multiple full adder circuits to add bit vectors of arbitrary
size.

This definition now allows us to derive a constraint for addition:

(l + r)[i]⇐⇒ sum(l, r, 0)[i] (5)

Defining the constraint for each output bit like this means bit i recurses with depth i in carry(l, r, cin),
yielding a formula of size O(n) per bit and thus size O(n2) for all bits combined when n is the
total number of bits. By introducing propositional variables for a helper bit vector k where

k[0]⇐⇒ cin

k[i+ 1]⇐⇒ c(l[i+ 1], r[i+ 1], k[i])
(6)

we can avoid repeatedly writing down the unfolded recursion for the carry of bit i, but can instead
directly refer to k[i]. This way, the complexity for n bit constraints can be reduced to O(n) by
using the following alternative definition, since it allows us to establish a constant uppper bound
for the size of formulas needed for each bit, regardless of the total number of bits.

(l + r)[i]⇐⇒ s(l[i], r[i], k[i]) (7)

For subtraction, we exploit the fact that the negation of an integer number stored in a bit vector
is always its two’s complement, i.e. −r = ∼r+1 holds. This means we can perform subtraction as
l−r = l+∼r+1. Furthermore, we take advantage of the fact that the cin bit of an addition allows
us to increase the result by one, so we can perform the subtraction using only a single addition
pass:

(l − r)[i]⇐⇒ sum(l,∼r, 1)[i] (8)

Both addition and subtraction are identical for signed and unsigned operands.
The less-than operator can be based on subtraction as we know that l < r ⇐⇒ (l − r) < 0.

Here we make use of the additional, final cout bit coming out of the addition performed for the
subtraction. In essence, it indicates that an underflow has occured during the subtraction, which
directly corresponds to (l − r) < 0. Unsigned comparison is hence implemented as

lu < ru ⇐⇒ carry(l,∼r, 1)[sz]
where sz =size(l) = size(r)

(9)

6

while signed comparison, where extra care must be taken for the signedness of its operands, can
be implemented as

ls < rs ⇐⇒ carry(l,∼r, 1)[sz]⊕ (l[sz − 1]⇐⇒ r[sz − 1])

where sz =size(l) = size(r)
(10)

3.3.3 Shifts

We start by defining static shifts�static and�static, i.e. ones where the shift distance C is known
at flattening-time:

(l�static C)[i] =

{
l[i− C] if i− C ≥ 0

0 otherwise

(l�static C)[i] =

{
l[i+ C] if i+ C < size(l)

0 otherwise

(11)

Because the operands of l � r have been limited by size(l) = 2size(r) in section 2.1, we can now
construct a so-called barrel shifter for arbitrary shifts. Let w = size(r) be the size of the shift
distance, then we split the entire shift operation into w stages, where stage s can either shift the
value by 2s bits, or leave it unaltered. The criteria for whether to shift in stage s is directly given
by r[s]. More formally, for a left shift:

lshift(l, r,−1)[i] = l[i]

lshift(l, r, s)[i] =

{
(lshift(l, r, s− 1)�static s)[i] if r[s]
lshift(l, r, s− 1)[i] if ¬r[s]

(l� r)[i]⇐⇒ lshift(l, r, size(r)− 1)[i]

(12)

Right shift is defined analogously by replacing �static by �static.

3.3.4 Multiplication and Division

Because multiplication is distributive over addition, we are allowed to multiply the left operand by
each bit of the right operand individually and then add up the result to obtain the full multiplication
result. Since multiplication by a bit vector with only a single bit set to one has the same effect as
a left shift by the index of this bit, we can simply make use of the already established static shift
for it. This approach leads to a similar recursive definition as for dynamic shifts:

mul(l, r,−1) = 0

mul(l, r, s) = mul(l, r, s− 1) +

{
(l�static s) if r[s]
0 if ¬r[s]

(l · r)[i]⇐⇒ mul(l, r, size(r)− 1)[i]

(13)

Multiplication is defined in the same way for both signed and unsigned operands.
All previous constraints were expressed as direct material equivalences for each resulting bit. For

division, we instead use the result of the division as an inner part of a multiplication and addition

7

that would produce the given dividend l. We also reserve additional propositional variables to
represent the remainder rem of the division and constraint it in a way that the division result is
unique and correct. For unsigned division, these two constraints are:

l = (l/r) · r + rem (14)

rem < r (15)

However, implementing this constraint directly on the original types of l and r is not restrictive
enough. Consider the following example:

4u8 = 172u8 · 3u8 + 0u8

0u8 < 3u8
(16)

Because of an overflow occuring in the multiplication, these statements are true, which means for
the division 4u8/3u8, we would accept the result 172u8 which obviously does not fit our under-
standing of division. Thus, to avoid such overflows we extend both operands of size sz to 2 · sz
when building the division constraint, but only use the lower sz bits of the result further.

Signed division uses constraint eq. (14) as-is, but applies different restrictions on the remainder.
First, the comparison from eq. (15) is performed on absolute values, which are calculated by taking
the two’s complement a value depending on its sign bit:

|rem| < |r| (17)

|x| =

{
∼x+ 1 if x[size(x)− 1]

x otherwise
(18)

This however is still not sufficient as the following example shows, which would incorrectly accept
−1/2 = −1:

−1 = −1 · 2 + 1

|1| < |2|
(19)

To eliminate such cases, we restrict the remainder to be either 0 or negative if and only if the
dividend is negative too, which corresponds for example to the definition of the % operator in
C99 [3]:

(rem[size(rem)− 1]⇐⇒ l[size(l − 1)]) ∨ ¬
∧
i

rem[i] (20)

3.4 Incremental Flattening
As a consequence of the above constraint definitions, some operations such as multiplication and
division produce significantly larger propositional formulas than others and are thus harder to
decide for the SAT solver. In particular, consider the following example:

(a · b = c) ∧ (b · a = c) ∧ (x < y) ∧ (y < x) (21)

It is apparent from only (x < y) ∧ (y < x) that this formula is unsatisfiable. However, due to the
complexity of the contained multiplications, our naive flattening implementation using minisat as
the SAT solver, running on Arch Linux with an Intel Core i7 4790k CPU, only terminates with
"Unsatisfiable" after approximately 15 seconds when deciding this formula on 32-bit vectors and

8

does not terminate in a reasonable amount of time, after consuming the entire 16GB of memory
of the test machine, when deciding on 64-bit vectors.

One approach in such cases is to solve the formula incrementally. The idea is to overapproximate
the solution space by accounting for only a subset of constraints and thus deciding a more simplistic
formula. If such an overapproximation is unsatisfiable, we can automatically conclude that the
full formula is as well. Otherwise, if there are no constraints that the just found solution of the
overapproximation does not satisfy, we have also found a solution for the full problem. If there are
unsatisfied constraints, we add some of them to our approximation and repeat the procedure:

--| Arguments: constraints to be used now, constraints to be used later
incrementalSAT :: [Propositional.Formula] -> [Propositional.Formula]

-> Propositional.SolveResult
incrementalSAT current pending =

case SAT.MiniSat.solve current of
Unsat -> Unsat -- partial formula unsatisfiable ⇒ full formula unsatisfiable
Solution assignment -> -- partial formula satisfiable

let conflicts = -- all constraints that are False under the found assignment
filter (λconstraint -> ¬ eval constraint assignment) pending in

if conflicts == [] then
Solution assignment -- no conflicts, full formula satisfied!

else
-- got conflicts, move the "easiest" from pending to current
let new = conflicts[0] in
incrementalSAT (current + new) (pending - new) -- continue

Since the constraints to be added can be freely chosen, we try to add more heavyweight constraints
as late as possible in the iteration to avoid deciding them if not strictly necessary. In our imple-
mentation, we use a very primitive cost function summing up tokens of a propositional formula.
Using it, the above incremental SAT solver can be brought into the context of bit vectors. We
start with only the skeleton and add constraints in the order given by the cost function:

costEstimate :: Propositional.Formula -> Word

solveFlattenedIncremental :: FlattenedFormula -> SolveResult
solveFlattenedIncremental flat =

let initialFormulas = [skeletonOf flat]
incrementalFormulas = -- all formulas in the order in which they should be added

sortOn costEstimate (allConstraints flat)
satSolution = incrementalSAT initialFormulas incrementalFormulas

in reconstructResult satSolution

Using this approach, our solver concludes the above example to be unsatisfiable instantly, or more
specifically, the time taken is too insignificant to be directly compared against the previous runs.

4 Solving a CrackMe
Finally we want to present a practical application of the implemented solver. Given is a CrackMe,
as commonly found in "Capture The Flag" contests, which is a small program available only as a
compiled x86_64 executable for Linux. When run, it asks for a password to be entered on stdin
and answers whether the input was correct:

$./crackme
Enter password: 123456
Wrong!

The challenge here is to find out the correct password by analyzing the binary without modifying
it. This reverse engineering process, which would commonly be done using programs such as
Radare2 [8] or Cutter [2], will be omitted here because it is out of scope of this paper. Instead, we

9

directly work with C code that is equivalent to the contents of the binary, given in appendix A.
The relevant part of this code is the function check(char *s):
int check(char *s)
{

for(size_t i = 0; i < 8; i++)
{

uint8_t a = s[i];
uint8_t b = s[(i + 1) % 8];
uint8_t c = s[(i + 2) % 8];
uint8_t d = s[(i + 3) % 8];

if(a & 0x80)
return 0;

uint8_t v = a << ((b + c) & 0b111);
v = v | (a >> (8 - ((b - c) & 0b111)));
v -= d;
if(v != hash[i])

return 0;
}
return 1;

}

This function accepts a string of length 8 and returns 1 iff the password is considered correct. The
check itself consists of multiple bit vector arithmetic operations on the input characters, resulting
in an 8-byte hash value. Trying to manually infer the expected input string from this is far from
trivial, but it illustrates a perfect example application for our solver. We can write a small script,
given in appendix B, running our solver on the following definition of a formula:
formula :: Formula
formula =

conjunction $
map (\i ->

let a = pwChar $ i
b = pwChar $ (i + 1) ‘rem‘ 8
c = pwChar $ (i + 2) ‘rem‘ 8
d = pwChar $ (i + 3) ‘rem‘ 8
shiftPlus = Slice Unsigned 0 3 (b :+: c)
shiftMinus = Slice Unsigned 0 3 (b :-: c)
eight = Const Unsigned $ BV.pack [False, False, False]
term = ((a :<<: shiftPlus) :|: (a :>>: (eight :-: shiftMinus))) :-: d

in (Atom $ term :==: uConst (hash!!i)) :&&: (Not $ Atom $ Pick 7 a)
) [0..7]

While it may appear different in terms of syntax, it does in fact exactly represent the semantics
of the above transformations done in C. Running the script yields the following unique solution:
$ stack runghc solve.hs
deadwing

And indeed, this is the correct password that the program accepts:
$./crackme
Enter password: deadwing
Correct!

5 Further Extensions and Applications
The presented operations are only one way of building a calculus on bit vectors. Extensions that
can be decided with flattening include for example fixed point and floating point arithmetic. To

10

optimize for the size of flattened formulas and performance, several preprocessing steps can be
performed, such as replacing a division by a constant power of 2 by a static bit shift, resulting
in a significantly simpler propositional formula. Furthermore, the explicit flattening of operators
can be replaced by abstract uninterpreted functions as outlined in [4], which in particular helps
deciding on equality between formulas.

The concept of flattening is also used in the well-known Z3 solver under the more general
term internalization as described in [7] and implemented in [10]. Such solvers are used heavily
in symbolic execution engines such as KLEE [1] or angr [9], which automate the process done
manually in section 4 by executing code where certain memory regions are marked as symbolic,
i.e. abstract and without a concrete value, and then using SMT to determine different concrete
assignments for it which will make the program explore different control flow paths.

References
[1] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs.” In: OSDI. Vol. 8. 2008,
pp. 209–224.

[2] Cutter. url: https://github.com/radareorg/cutter (visited on 06/03/2020).

[3] ISO C Standard 1999. Tech. rep. 1999. url: http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1124.pdf.

[4] Daniel Kroening and Ofer Strichman. “Bit Vectors”. In: Decision procedures. Springer, 2016.
Chap. 6.

[5] minisat. url: http://minisat.se (visited on 05/27/2020).

[6] minisat-solver. Hackage. url: https : / / hackage . haskell . org / package / minisat -
solver (visited on 05/27/2020).

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Proofs and Refutations, and Z3.” In:
LPAR Workshops. Vol. 418. Doha, Qatar. 2008, pp. 123–132.

[8] Radare2. url: https://github.com/radareorg/radare2 (visited on 06/03/2020).

[9] Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis”. In: IEEE Symposium on Security and Privacy. 2016.

[10] Z3, theory_bv.cpp. url: https://github.com/Z3Prover/z3/blob/master/src/smt/
theory_bv.cpp (visited on 06/05/2020).

11

https://github.com/radareorg/cutter
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://minisat.se
https://hackage.haskell.org/package/minisat-solver
https://hackage.haskell.org/package/minisat-solver
https://github.com/radareorg/radare2
https://github.com/Z3Prover/z3/blob/master/src/smt/theory_bv.cpp
https://github.com/Z3Prover/z3/blob/master/src/smt/theory_bv.cpp

A CrackMe C Code

#include <string.h>
#include <stdio.h>
#include <stdint.h>

uint8_t hash[8] = { 0xa2, 0x35, 0xa3, 0x0f, 0x1c, 0xd0, 0x0e, 0x9e };

int check(char *s)
{

for(size_t i = 0; i < 8; i++)
{

uint8_t a = s[i];
uint8_t b = s[(i + 1) % 8];
uint8_t c = s[(i + 2) % 8];
uint8_t d = s[(i + 3) % 8];

if(a & 0x80)
return 0;

uint8_t v = a << ((b + c) & 0b111);
v = v | (a >> (8 - ((b - c) & 0b111)));
v -= d;
if(v != hash[i])

return 0;
}
return 1;

}

int main()
{

printf("Enter␣password:␣");
char str[0x10];
fgets(str, sizeof(str), stdin);
if(strlen(str) == 8 && check(str))

printf("Correct!\n");
else

printf("Wrong!\n");
return 0;

}

12

B CrackMe Solver Script

import Common
import Formula
import Solve
import qualified BitVectorValue as BV

import Data.Maybe
import Data.Word
import qualified Data.Map as Map
import qualified Data.ByteString as B

import Control.Monad

hash :: [Word8]
hash = [0xa2, 0x35, 0xa3, 0x0f, 0x1c, 0xd0, 0x0e, 0x9e]

-- |Combine a list of formulas into a single formula one using And
conjunction :: [Formula] -> Formula
conjunction [a] = a
conjunction (a : as) = And a (conjunction as)
conjunction _ = undefined

-- |Variable name for the i-th character in the password
pwCharVarName :: Int -> String
pwCharVarName i = "pw[" ++ show i ++ "]"

-- |Term for the i-th character in the password
pwChar :: Int -> Term
pwChar = uVar 8 . pwCharVarName

formula :: Formula
formula =

conjunction $
map (\i ->

let a = pwChar $ i
b = pwChar $ (i + 1) ‘rem‘ 8
c = pwChar $ (i + 2) ‘rem‘ 8
d = pwChar $ (i + 3) ‘rem‘ 8
shiftPlus = Slice Unsigned 0 3 (b :+: c)
shiftMinus = Slice Unsigned 0 3 (b :-: c)
eight = Const Unsigned $ BV.pack [False, False, False] -- Only 3 bits,

overflow on purpose for 8 - x
term = ((a :<<: shiftPlus) :|: (a :>>: (eight :-: shiftMinus))) :-: d

in (Atom $ term :==: uConst (hash!!i)) :&&: (Not $ Atom $ Pick 7 a)
) [0..7]

main :: IO ()
main =

case solveAll formula of
Solution s ->

forM_ s (\s ->
putStrLn $ toEnum <$> fromIntegral <$> map (\i ->

let bv = s Map.! (pwCharVarName i) in
(fromJust (BV.fromBitVector bv))::Word8) [0..7]

)
res -> print res

13

	Motivation
	Info about Code Listings

	Definitions
	Semantics

	Flattening
	High-Level Algorithm
	Skeleton
	Term and Atom Constraints
	Bitwise Operations and Equality
	Addition, Subtraction and Comparison
	Shifts
	Multiplication and Division

	Incremental Flattening

	Solving a CrackMe
	Further Extensions and Applications
	CrackMe C Code
	CrackMe Solver Script

