
Presburger Arithmetic

Nhat Minh Hoang

Technische Universität München
hoang@in.tum.de

Abstract. In this paper a procedure for constructing an automaton that de-
cides Presburger arithmetic is explained. Additionally, the construction will be
extended to accept integer solutions and also be specialized for equations, strict
inequalities, divisibility relations and linear systems of equations.

1 Introduction

�e problem of solving linear constraints is one of the most studied and well-known
problems in computer science. Finding useful applications is not a di�cult task since
a multitude of problems can be expressed as linear programs. Especially optimization
problems are very well suited for linear programming such as various network �ow
problems can be expressed as linear constraints. �e specialized version of linear pro-
gramming, integer programming, is a much harder task to solve since it restricts its
solution space to integers only. �e methods for solving integer programming inte-
ger programs o�en search for an optimal solution of the constraint and can usually
be divided in exact methods and heuristic methods such as hill climbing [21], linear
programming relaxation [16], cu�ing planes [14] or simulated annealing [18].

Restricting the solutions of a linear constraint to natural numbers yields an in-
stance of Presburger arithmetic [19]. Presburger arithmetic is a First-Order theory
over the natural numbers. �is logic only allows for addition and also multiplication
by a constant. Presburger arithmetic is weaker than Peano arithmetic regarding the
expressiveness since Presburger arithmetic does not allow for multiplication with non-
constant variables. However, Presburger arithmetic is decidable in contrast to Peano
arithmetic. �erefore, a number of decision procedures exists that decide for all Pres-
burger formulae

Mojżesz Presburger showed that his logic is decidable [19] by proving that it ad-
mits quanti�er elimination. Later on, J.R. Büchi proved the decidability of the Second-
Order Monadic Logic with one successor [4, 3]. It includes that every logic de�nable
in Weak Second-Order Monadic Logic with one successor WS1S is decidable using �-
nite automata. It was also proven that Presburger arithmetic is de�nable in WS1S and
therefore it can be decided using �nite automata.

Boudet and Comon [1] use Büchi’s technique for constructing the automaton and
use this construction to �rst solve linear Diophantine equations. �en it was extended
to solve Presburger arithmetic through intersection, union and negation of the regular
languages. In this paper the construction by Boudet and Comon [1] will be presented
as well as introducing other meaningful extensions to the procedure.

2 Presburger Arithmetic

Presburger arithmetic is a First-Order theory reasoning about addition where 0 and 1
are the only constants.

2.1 Syntax

�e following formal grammars lay out the basic de�nition of Presburger arithmetic.

De�nition 1 (Terms). Let VAR be a �nite set of variables. �en the following formal
grammar de�nes Presburger-Arithmetic terms:

t ::= N0 | VAR | t+ t | N0 ∗ t

De�nition 2 (Formula). An atomic formula consists of two terms without negation,
logical operators or quanti�ers:

af ::= t < t | t ≤ t | t > t | t ≥ t | t = t

Additionally, an atomic formula is also a valid Presburger-Arithmetic formula. Formulae
are de�ned the following way:

f ::= af | ¬f | f ∨ f | f ∧ f | ∃xf | ∀xf

A Presburger-Arithmetic sentence is a formula without free variables.

In Presburger’s original theory, only the constants 0 and 1, the addition over the
natural numbers and the predicate ≤ were used. It is entirely possible to restrict the
de�nition of Presburger arithmetic to the structure (N, 0, 1,+,≤) which has the same
expressiveness as the de�nitions used here.

3 Algorithm

In the following we will present a procedure by Boudet and Comon [1] that involves
constructing �nite automata that can decide Presburger arithmetic. It is assumed that
the reader is familiar with the notions of deterministic �nite automata (DFA) and non-
deterministic �nite automata (NFA). For every Presburger formula we can construct an
automaton that recognizes the set of its natural solution. Satis�ability of the formula
then is reduced to emptiness checking of the automaton.

Given a Presburger formula, the solutions over the naturals for them can be viewed
as a tuple ~c = (c1, . . . , cn). For instance, a solution for x + 2y − 3z ≤ 2 would
be (1, 2, 3). We encode the solution tuple in binary format with least-signi�cant bit
�rst (lsbf) encoding. �e tuple (1, 2, 3) is represented by (10, 01, 11) or by its matrix

representation
[
x
y
z

]
=

[
1 0
0 1
1 1

]
. All words of the automaton are interpreted as binary tuples

in matrix representation. If a binary word is shorter than other numbers, zeroes ”0”
are added at the end until the same length is reached.

In the paper by Boudet and Comon [1] only procedures for constructing automata
for inequalities

∑n
i=1 aixi ≤ b and equations

∑n
i=1 aixi = bwere presented. �e rest

of the formulae of Presburger arithmetic can be constructed with union, intersection,
complementation and projection. In the following sections we describe the procedure
for constructing an automaton that recognizes the natural solutions of an inequality.

2

3.1 Atomic Inequalities

Every inequality t1 ≤ t2 can be rewri�en to an inequality of the form
∑n

i=1 ai ·xi ≤ b
where ai, b ∈ Z. �e DFA A~a~x≤b(Q,Σ, q0, δ, F) that recognizes the solution of an
inequality

∑n
i=1 ai · xi ≤ b (abbreviated with ~a~x ≤ b) has the following properties:

– �e alphabet Σ = {0, 1}n
– Every state is labeled a�er an inequality ~a~x ≤ z with z ∈ Z

=⇒ Q ⊆ {~a~x ≤ z | z ∈ Z}
– �e initial state q0 is ~a~x ≤ b (abbreviated with b). For convenience, every state is

referred by its integer constant

In the subsequent sections, we will de�ne the transition relation δ and the set of �nal
states F for the automaton.

Transition Relation Given an atomic inequality ~a~x ≤ b with n variables. Let w =
σ · wr be a word that encodes a tuple ~c. Let ~cr be the tuple that is encoded by wr .
Let ~σ be the tuple encoded by σ. �en ~c can be rewri�en as ~c = 2 · ~cr + ~σ with the
element-wise addition for tuples. It holds the following:

~a · (2 · ~cr + ~σ) ≤ b ⇐⇒ ~a · ~cr ≤
1

2
(b− ~a · ~σ) (1)

�at means the remainder wr has to encode a solution which satis�es the new in-
equality enforced by σ. �is idea is used in the automaton construction by Boudet and
Comon [1].

By convention, a state q in the automaton accepts all solutions w such that ~a~c ≤ q
if w encodes a tuple ~c. For an input σ, a successor state q′ of q should therefore accept
all words wr if σwr is accepted by q. �is can be achieved by labeling q′ with the
inequality ~a~x ≤ 1

2 (q − ~a~σ). If 1
2 (q − ~a~σ) is not an integer, then the greatest integer

i < 1
2 (q − ~a~σ) is used since ~a~x ≤ 1

2 (q − ~a~σ) and ~a~x ≤ i have the same solutions in
Nn. �e only case which leads to no solution is when ~a~x ≤ b for all ai ≥ 0 and b < 0.
�is leads to the following de�nition:

De�nition 3 (Transition relation of the automaton for inequalities). Let~a~x ≤ q
be a state of the automaton for an inequality ~a~x ≤ b. Let σ ∈ {0, 1}n where n denotes
the number of variables. �en the successor state ~a~x ≤ q′ is determined by the following
relation:

q′ = δ(q, σ) =

⌊
1

2
(q − ~a · ~σ)

⌋

Final States Boudet and Comon consider only the states which accept the empty
word ε as �nal. �e empty word encodes {0}n. In this construction, these are the states
that encode inequalities ~a~x ≤ b with b ≥ 0. �e reason behind this is the following:
Given a sequence ~δ of transitions starting in q and ending in q′. Assume that q′ < 0.
�us, following from de�nition 3, the word w composed by the le�ers of ~δ encodes a
tuple ~c such that ~a~c > q. �erefore, w would not be accepted by state q.

3

De�nition 4 (Accepting Condition of the automaton for inequalites). Given a
state q from the automaton that accepts the solution for an inequality ~a~x ≤ q. State q is
�nal if it accepts the empty word. �us, every state with label q ≥ 0 is �nal.

Following from de�nition 3 and 4, the algorithm for constructing a DFA from an
atomic inequality is shown in INEQtoDFA. To be completely precise, a trap state has to
be also included in case of an inequality ~a~x ≤ b with ∀i. ai ≥ 0 and b < 0. Especially
for the case that the input formula is of the form. �en, the algorithm would return a
single trap state. In the wri�en algorithm INEQtoDFA the trap state has been omi�ed.
�e algorithm was presented in the Lecture Automata and Formal Languages held by
Javier Esparza in 2019 at the Technische Universität München [9].

Input: an atomic inequality of the form
∑n

i=1 aixi ≤ b
Result: an automaton A~a~x≤b = (Q,Σ, δ, q0, F)

1 Q← ∅, δ ← ∅, F ← ∅, q0 ← b, W ← {b}, Σ ← {0, 1}n;
2 whileW 6= ∅ do
3 pick k from W , remove k from W ; add k to Q;
4 if k ≥ 0 then
5 add k to F
6 for σ ∈ Σ do
7 j ←

⌊
1
2
(k − ~a · σ)

⌋
;

8 if j /∈ Q then
9 add j to W

10 add (k, σ, j) to δ;
11 return (Q,Σ, δ, q0, F)

Procedure INEQtoDFA

3.2 Termination

Let
∑n

i=1 aixi ≤ b be an inequality. Let s =
∑n

i=1 |ai| be the sum of the absolute val-
ues of each coe�cient. Boudet and Comon [1] stated that the construction presented
in algorithm INEQtoDFA has at most |b| + s states. �us, the algorithm terminates.
Furthermore, Esparza gave a more detailed proof in his lecture notes [9]. All states
q in the automaton satisfy the following property: It was proven that every state q
in the automaton satis�es the property −|b| − s ≤ q ≤ |b| + s. �is can be proven
through an induction on the states of the automaton. �e initial state b already satis-
�es the property. Let q′ be a successor state of another state in the automaton. �en
for σ ∈ {0, 1}n exists a state q such that q′ = b 12 (q−~a~σ)c. By assumption it holds for
q that −|b| − s ≤ q ≤ |b|+ s. For q′, the same property holds:

−|b| − s ≤ −|b| − 2s

2
≤
⌊−|b| − s− ~a · σ

2

⌋
≤ q′ ≤

⌊ |b|+ s− ~a · σ
2

⌋
≤ |b|+ s.

4

3.3 Extension to Formulae

We now have established a basis that can be extended to the rest of Presburger arith-
metic. �e procedure that extends to other formulae consists of using the complemen-
tation, intersection, union of regular languages as well as projection on a relation.

Complementation LetAf be an automaton for a formula f . IfAf is a DFA, comple-
mentation can be performed in linear time by exchanging the set of �nal and non-�nal
states which yieldsA¬f . In case ofAf being an NFA, complementation becomes more
costly with regard to size of the automaton. �e NFA �rst has to be determinized which
yields an equivalent DFA. �is can be achieved by using the subset construction for
NFAs [11]. For an NFA A = (Q,Σ, q0, F, δ), the following description de�nes the
equivalent DFA AD :

– QD ⊆ 2Q

– ΣD = Σ
– qD0

= {q0}
– FD = {qD ∈ Q | ∃q ∈ qD. q ∈ F}
– δD(qD, i) =

⋃
q∈qD δ(q, i)

�e determinization of an NFA has exponential time complexity O(2n). A�er deter-
minizing the NFA, complementation can be performed.

Union and Intersection Let Af1 = (Q1, Σ1, q0, F1, δ1) be an automaton recog-
nizing the solutions of a formula f1 and Af2 = (Q2, Σ2, p0, F2, δ2) recognizing the
solutions of f2. Again, automata theory provides us with a construction that can con-
struct union and intersection of two automata [15]. For both union and intersection,
the idea is to let both automata run at the same time. �is construction is called the
product automaton. In case of Σ1 = Σ2, the description of the product construction
Af1◦f2 for Af1 and Af2 is as follows:

– Q ⊆ Q1 ×Q2

– qf1◦f2 = (q0, p0)
– Σ = Σ1

– For DFAs: δf1◦f2((q, p), i) = (q′, p′), q′ = δ1(q, i), p
′ = δ2(p, i)

– For NFAs: ∀q′ ∈ δ1(q, i),∀p′ ∈ δ2(p, i): add ((q, p), i, (q′, p′)) to δf1◦f2

– (q, p) ∈ F ⇐⇒

{
q ∈ F1 ∧ p ∈ F2 for Af1∧f2
q ∈ F1 ∨ p ∈ F2 for Af1∨f2

If Σ1 6= Σ2, the automata A′f1 = (Q1, Σ1 ∪ Σ2, q0, F1, δ1) and A′f2 = (Q2, Σ1 ∪
Σ2, p0, F2, δ

′
2) are needed. To constructA′fi , i ∈ {1, 2}, simply add a trap state qt such

that every transition with input i ∈ (Σ1∪Σ2)\Σi leads to qt. �e union/intersection
of A′f1 and A′f2 have the same solutions as the union/intersection of Af1 and Af2 .

Additionally, to construct the union for two NFAs, it su�ces to take the union of
both state sets, alphabets, initial states, transition relations and �nal states.

Equations A formula of the form f1 = f2 can be rewri�en as f1 ≤ f2 ∧ f2 ≤ f1.

5

Existential �anti�cation Let Af be an automaton recognizing the solutions of a
formula f . To construct the automaton A∃xi.f we perform a projection

π : {x1, . . . , xi−1, xi, xi+1, . . . , xn} → {x1, . . . , xi−1, xi+1, . . . , xn}

onto all variables of f except xi [12]. In the automaton we simply omit the entry of
the le�er corresponding to xi for every transition in Af . A�erwards, we might have
to �x the set of �nal states whereA∃xi.f does not accept another encoding of a correct
solution.

For example, given an NFA as shown in Fig. 1 that accepts the tuple (2, 4). If we

[
0
0

] [
1
0

] [
0
1

] [
0
0

]

Fig. 1. NFA accepting (2, 4)

perform a projection on the �rst entry of the tuple, only ”0100∗” would be accepted
although ”01” is also a valid encoding of 2. �e third state in Fig. 1 has to be marked
as �nal as well. In general, a�er performing a projection on the automaton, we also
have to check for states that can reach �nal states through zeroes.

Universal�anti�er A universal formula ∀x. f can be rewri�en as ¬∃x. ¬f .

3.4 Direct Construction: Equations

It is possible to directly construct an automaton that recognizes the natural solutions
of an equation [1]. A similar idea used in the construction for inequalities is used. Let
~a~x = b be an equation and w = σ ·wr a possible solution of the equation. �e natural
tuple ~c is encoded by w and ~cr is encoded by wr . As in the case of inequalities, a
similar property holds:

~a · (2 · ~cr + ~σ) = b ⇐⇒ ~a · ~cr =
1

2
(b− ~a · ~σ) (2)

Equation (2) has a solution if and only if b and ~a~σ have the same parity. For an input
σ, if (b − ~a~σ) is not even, the transition is directed to a trap state st. To summarize,
the transition relation is de�ned as follows:

δ(q, σ) =

{
1
2 (q − ~a~σ) if q − ~a~σ even
st otherwise

Procedure EQtoDFA shows the algorithm. Termination of INEQtoDFA is also guaran-
teed [1].

6

Input: an atomic equation of the form
∑n

i=1 aixi = b
Result: a transducer T = (Q,Σ, δ, q0, F)

1 Q← {st}, δ ← ∅, F ← ∅, q0 ← b, W ← {b}, Σ ← {0, 1}n;
2 whileW 6= ∅ do
3 pick k from W , remove k from W ; add k to Q;
4 if k = 0 then
5 add k to F
6 for σ ∈ Σ do
7 j ← 1

2
(k − ~a · σ);

8 if k − ~a · σ is even then
9 add (k, σ, j) to δ;

10 if j /∈ Q then
11 add j to W
12 else
13 add (k, σ, st) to δ
14 return (Q,Σ, δ, q0, F)

Procedure EQtoDFA

3.5 Direct Construction: Strict Inequalities

Lastly, it is also possible to directly construct the automaton for strict inequalities of
the form ~a~x < b. Let w = σ · wr be a an accepted word. For a tuple ~cr of naturals
encoded by wr a similar property as in the case for inequalities holds:

~a · (2 · ~cr + ~σ) < b ⇐⇒ ~a~cr <
1

2
(b− ~a~σ) (3)

If 1
2 (b − ~a~σ) ∈ N, then we can add a transition (b, σ, 12 (b − ~a~σ)) to the transition

relation of the automaton. Otherwise, we use d 12 (b − ~a~σ)e, since ~a~x < 1
2 (b − ~a~σ)

has the same solutions in Nn as ~a~x < d 12 (b − ~a~σ)e. �e transition relation for the
automaton is de�ned as follows:

δ(q, σ) =

⌈
1

2
(q − ~a~σ)

⌉
, σ ∈ {0, 1}

�e only lines that have to be modi�ed in the original INEQtoDFA algorithm are line
4 and 7. We would mark state k as �nal only if k > 0 and instead of using the �oor
function we use the ceiling function.

4 Example

We proceed to construct an automaton that accepts the set of solutions for ∃x. 2x −
y = 0. Table 1 shows the execution steps for the construction process. Note that the
transitions to the trap state have been omi�ed for the sake of compactness. Fig. 2
shows the DFA for 2x − y = 0. �e trap state has been omi�ed here. In order to get
the automaton for ∃x. 2x − y = 0 we omit in each transition the �rst entry of the
vector. A�erwards, we do not have to �x the set of �nals states since state 1 will not
reach state 0 with input ”0”. Fig. 3 shows the NFA for ∃x. 2x − y = 0. Fig. 4 shows

7

the equivalent DFA for the NFA in Fig. 3. �e transition to the empty state from state
0 has been omi�ed as well.

Table 1. Execution steps of EQtoDFA for 2x −
y = 0

i W Q New Transitions

0 {0} ∅ -
1 {−1} {0} (0,

[
0
0

]
, 0), (0,

[
1
0

]
,−1)

2 ∅ {0,−1} (−1,
[
1
1

]
,−1), (−1,

[
0
1

]
, 0)

0 1[
0
1

]

[
1
0

]
[
0
0

] [
1
1

]

Fig. 2. DFA for 2x− y = 0

0 1
1

0

0 1

Fig. 3. NFA for ∃x.2x− y = 0

{0} {0, 1}0

0, 1

Fig. 4. DFA for ∃x.2x− y = 0

For the emptiness check, it would have been su�cient to perform a check on the
NFA in Fig. 3 and avoid the determinization step. We would have seen that the au-
tomaton is not empty, therefore the formula is satis�able. �e solutions of the formula
are the words formed by the expression 0{0, 1}∗ as seen in Fig. 4 which are all binary
encodings of even numbers.

5 Further Improvements

5.1 Systems of Linear Elementary Formulae

Given a system of linear equations:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

...
ak,1x1 + ak,2x2 + · · ·+ ak,nxn = bk

�e question is whether a solution ~c = (c1, c2, . . . , cn) ∈ Nn exists. Intersecting the
automataA1, A2, . . . , Ak for

∑n
i=0 a1,ixi = b1,

∑n
i=0 a2,ixi = b2, . . . ,

∑n
i=0 ak,ixi =

bk respectively returns an automaton that recognizes the solutions for this system.
However, Boudet and Comon [1] showed a procedure that directly constructs an au-
tomaton for this system.

8

�e system can be rewri�en to the following concise form:

k∧
i=1

n∑
j=1

ai,j · xj = bi. (4)

Each state is labeled a�er a conjunction of linear equations. �e initial state is (4) or
simply~b = (b1, b2, . . . , bk). To compute the successor states, the same notion for con-
structing the automaton for equations is applied. For an input ~σ = (σ1, σ2, . . . , σn),
the following holds:

k∧
i=1

n∑
j=1

ai,j(2c
′
j + σj) = bi ⇐⇒

k∧
i=1

n∑
j=1

ai,jc
′
j =

1

2

(
bi −

n∑
j=1

ai,jσj

)
(5)

�e successor state then is determined as described in the le�-hand side of (5) if bi −∑n
j=1 ai,jσj is even for all i. �e �nal state is the system where ki = 0 for all i.

5.2 Extension to Integer Solutions

�e algorithm can be extended to the solutions over the integers using NFAs and two’s-
complement encoding. We also use lsbf representation again. Stacking the same sign bit
does not alter the value of the bit sequence. For example, 011 encodes 0+2−4 = −2.
So does 0111 with 0 + 2 + 4− 8 = −2. Another example is

[
0 1 1
1 1 0

]
where the sign bit

tuple is
[
1
0

]
. �e expression

[
0 1 1
1 1 0

][
1
0

]∗ therefore encodes the same tuple.
Let w = σ · wr be a binary word. Let ~c be an integer tuple encoded by w and ~cr

encoded by wr . For wr there are two cases:

– Case wr 6= ε: It holds that ~c = (2 · ~cr + σ)
– Case wr = ε: w = σ is a sign bit

A single bit in two’s-complement encodes either 0 or −1. �us, if the sub-word wr is
empty, thenw = σ encodes−~σ. In the extended construction, we always have to check
for these two cases in every state. Let q be a state of an automaton for an inequality
~a~x ≤ b. Let w = σ · wr be a word. For the case of wr 6= ε, we calculate the successor
state as de�ned for inequalities. In case of wr = ε, we check whether ~a(−~σ) ≤ q
holds. If the check is successful, then an additional transition is added which leads to
a new �nal state qf . �e automaton that recognizes the integer solutions of a formula
has only one �nal state which is qf .

For inequalities, strict inequalities and equations, the transition relation of their
respective transition relation is extended to the following de�nition:

(~a~x ≤ b) : δ(q, σ) =

{{⌊
1
2

(
q − ~a~σ

)⌋
, qf
}

q + ~a~σ ≥ 0{⌊
1
2

(
q − ~a~σ

)⌋}
otherwise

(~a~x < b) : δ(q, σ) =

{{⌈
1
2

(
q − ~a~σ

)⌉
, qf
}

q + ~a~σ > 0{⌈
1
2

(
q − ~a~σ

)⌉}
otherwise

(~a~x = b) : δ(q, σ) =

{{
1
2

(
q − ~a~σ

)
, qf
}

q − ~a~σ even ∧ q + ~a~σ = 0{
1
2

(
q − ~a~σ

)}
q − ~a~σ even

9

5.3 Divisibility Relation

Lastly, it is also possible to construct the automaton for a divisibility relation d|t + c
where d ≥ 2 and t denotes a term and c ∈ Z a constant. A formula d|t + c denotes
all solutions ~s such that t

[
~s
]
+ c is divisible by d. �e construction used here was

presented in a paper by Klaedtke [13]. �e automaton uses most-signi�cant-bit-�rst
format with two’s-complement encoding. Let r(a, b) be a function that calculates the
remainder of a divided by b. �e automaton Ad|t+c = (Q,Σ, q0, δ, F) is structured as
follows:

– Q = {q0, 0, 1, . . . , d− 1}
– Σ = {0, 1}n

– δ(q, σ) =

{
r(−t

[
~σ
]
, d), if q = q0

r(2q + t
[
~σ
]
, d), otherwise

– q ∈ F ⇐⇒ q ∈ Q ∩ N ∧ d|q + c

6 Complexity

Regarding the size of the automaton construction by Boudet and Comon [1], a distinc-
tion between the quanti�er-free fragment and full logic can be made. For an atomic
formula f , let K(f) =

∑n
i=1 |ai|+ |b| be the sum of the absolute values of all coe�-

cients ai and the absolute value of the constant. Let V (f) be the number of variables.
�en, the state complexity of an automaton for a quanti�er-free Presburger formula
is O(2n) with n = K(f) + V (f). For the full logic it is O(222

n

).
Klaedtke [13] came to a similar conclusion regarding the size of automata for Pres-

burger arithmetic. He showed that the size of the minimal DFA for a Presburger arith-
metic formula is triple exponential to the length of the formula. �is upper bound is
only achievable when the automaton is minimized a�er a costly operation such as
negation.

7 Final Words

�e automata-theoretic approach for deciding Presburger arithmetic not an optimized
one. �e constructed automaton is not necessarily minimal which means that fur-
ther minimization steps need to be considered. And regarding the quanti�er-free frag-
ment of Presburger arithmetic, modern integer programming solvers outperform the
automata-based method [10].

Deciding Presburger arithmetic is a rewarding task since insights gained research
directly bene�t integer programming problems as well. Solvers based on quanti�er
elimination can be found in the Isabelle proof assistant [6, 17]. And research in other
related �elds indirectly or even directly bene�t research on Presburger arithmetic as
shown in [10] or in [20]. Research using Presburger arithmetic is commonly found in
the area of Model Checking. Some examples using Presburger arithmetic are found in
[5, 7, 2, 8].

10

References

[1] Alexandre Boudet and Hubert Comon. “Diophantine Equations, Presburger Arith-
metic and Finite Automata”. In: Trees in Algebra and Programming - CAAP’96,
21st International Colloquium, Linköping, Sweden, April, 22-24, 1996, Proceedings.
Ed. by Hélène Kirchner. Vol. 1059. Lecture Notes in Computer Science. Springer,
1996, pp. 30–43.

[2] Véronique Bruyère, Emmanuel Dall’Olio, and Jean-FranÇois Raskin. “Durations,
Parametric Model-Checking in Timed Automata with Presburger Arithmetic”.
In: STACS 2003. Ed. by Helmut Alt and Michel Habib. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 687–698.

[3] Julius Richard Büchi. “On a Decision Method in Restricted Second Order Arith-
metic”. In: Proc. of the International Congress on Logic, Method and Philosophy of
Science, 1962. Stanford University Press. 1962, pp. 1–11.

[4] Julius Richard Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In:
Mathematical Logic �arterly 6.1-6 (1960), pp. 66–92.

[5] Tev�k Bultan, Richard Gerber, and William Pugh. “Symbolic Model Checking
of In�nite State Systems Using Presburger Arithmetic”. In: Computer Aided Ver-
i�cation, 9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997,
Proceedings. Ed. by Orna Grumberg. Vol. 1254. Lecture Notes in Computer Sci-
ence. Springer, 1997, pp. 400–411.

[6] Amine Chaieb and Tobias Nipkow. “Verifying and Re�ecting �anti�er Elimi-
nation for Presburger Arithmetic”. In: Logic for Programming, Arti�cial Intelli-
gence, and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Ja-
maica, December 2-6, 2005, Proceedings. Ed. by Geo� Sutcli�e and Andrei Voronkov.
Vol. 3835. Lecture Notes in Computer Science. Springer, 2005, pp. 367–380.

[7] Hubert Comon and Yan Jurski. “Multiple Counters Automata, Safety Analysis
and Presburger Arithmetic”. In: Computer Aided Veri�cation, 10th International
Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings.
Ed. by Alan J. Hu and Moshe Y. Vardi. Vol. 1427. Lecture Notes in Computer
Science. Springer, 1998, pp. 268–279.

[8] Stéphane Demri et al. “Model-checking CTL* over �at Presburger counter sys-
tems”. In: Journal of Applied Non-Classical Logics 20.4 (2010), pp. 313–344.

[9] Javier Esparza. “Automata and Formal Languages”. University Lecture Notes,
Technische Universitat München. 2019.

[10] Vijay Ganesh, Sergey Berezin, and David L. Dill. “Deciding Presburger Arith-
metic by Model Checking and Comparisons with Other Methods”. In: Formal
Methods in Computer-Aided Design, 4th International Conference, FMCAD 2002,
Portland, OR, USA, November 6-8, 2002, Proceedings. Ed. by Mark D. Aagaard and
John W. O’Leary. Vol. 2517. Lecture Notes in Computer Science. Springer, 2002,
pp. 171–186.

[11] John E. Hopcro�, Rajeev Motwani, and Je�rey D. Ullman. Introduction to au-
tomata theory, languages, and computation. 3rd Edition. Pearson international
edition. Addison-Wesley, 2007.

[12] Galina Jirásková and Tomás Masopust. “State Complexity of Projected Lan-
guages”. In: Descriptional Complexity of Formal Systems - 13th International Work-
shop, DCFS 2011, Gießen/Limburg, Germany, July 25-27, 2011. Proceedings. Ed. by

11

Markus Holzer, Martin Kutrib, and Giovanni Pighizzini. Vol. 6808. Lecture Notes
in Computer Science. Springer, 2011, pp. 198–211.

[13] Felix Klaedtke. “On the Automata Size for Presburger Arithmetic”. In: 19th IEEE
Symposium on Logic in Computer Science (LICS), 14-17 July 2004, Turku, Finland,
Proceedings. IEEE Computer Society, 2004, pp. 110–119.

[14] Hugues Marchand et al. “Cu�ing planes in integer and mixed integer program-
ming”. In: Discrete Applied Mathematics 123.1 (2002), pp. 397–446.

[15] John C Martin. Introduction to Languages and the �eory of Computation. Vol. 4.
McGraw-Hill New York, 1991.

[16] Jiřı́ Matoušek and Bernd Gärtner. “Integer Programming and LP Relaxation”.
In: Understanding and Using Linear Programming. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 29–40.

[17] Tobias Nipkow. “Linear �anti�er Elimination”. In: Journal of Automated Rea-
soning 45.2 (2010), pp. 189–212.

[18] Martin Pincus. “Le�er to the Editor—A Monte Carlo Method for the Approxi-
mate Solution of Certain Types of Constrained Optimization Problems”. In: Op-
erations Research 18.6 (1970), pp. 1225–1228.

[19] Mojżesz Presburger. “Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-
tri�”. In: Comptes Rendus du I congres de Mathématiciens des Pays Slaves. Slaves,
Warsaw (1929), pp. 92–101.

[20] William Pugh. “�e Omega Test: A Fast and Practical Integer Programming Al-
gorithm for Dependence Analysis”. In: Proceedings of the 1991 ACM/IEEE Confer-
ence on Supercomputing. Supercomputing ’91. Albuquerque, New Mexico, USA:
Association for Computing Machinery, 1991, pp. 4–13.

[21] Stuart Jonathan Russell and Peter Norvig. Arti�cial intelligence - a modern ap-
proach, 2nd Edition. Prentice Hall series in arti�cial intelligence. Prentice Hall,
2003.

12

	Presburger Arithmetic
	Introduction
	Presburger Arithmetic
	Syntax

	Algorithm
	Atomic Inequalities
	Transition Relation
	Final States

	Termination
	Extension to Formulae
	Complementation
	Union and Intersection
	Equations
	Existential Quantification
	Universal Quantifier

	Direct Construction: Equations
	Direct Construction: Strict Inequalities

	Example
	Further Improvements
	Systems of Linear Elementary Formulae
	Extension to Integer Solutions
	Divisibility Relation

	Complexity
	Final Words

