
Technische Universität München WS 2010/11
Institut für Informatik 25. 10. 2010

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 1

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:

“2 + (2 ::nat)” “ (2 ::nat) ∗ (5 + 3 )” “ (3 ::nat) ∗ 4 − 2 ∗ (7 + 1 )”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and all additionally necessary lemmas) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x ≤ length xs”

Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

1



Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Prove the following theorem. Hint: you need to find an additional lemma to prove it.

theorem “rev (x # xs) = snoc (rev xs) x”

Exercise 1.5 Tree traversal

Extend the tree datatype of the lecture (in Tree Demo.thy) in such a way that values
are also stored in the leaves of a tree. Also reformulate the mirror function accordingly.

Define functions pre order and post order, which traverse a tree and collect all stored
elements in a list in the respective order, such that the following theorem holds. You may
use any of the previously defined functions and may need to prove additional lemmas.

theorem “pre order (mirror t) = rev (post order t)”

Homework 1 Leaves of a tree

Submission until Wednesday, November 3, 2010, 12:00 (noon).

Define a datatype ntree of binary trees which store natural numbers in leaves, but no
data in inner nodes. Moreover, write a function which returns, for such a binary tree,
a list containing all natural numbers stored in the leaves, in any order and without
removing duplicates.

fun leaves :: “ntree ⇒ nat list”

Additionally, define a function which counts the number of leaves in a tree.

fun leaf count :: “ntree ⇒ nat”

Then prove the following property about binary trees; you may need to prove additional
lemmas.

theorem “length (leaves t) = leaf count t”

Now write a function treesum which sums up the natural numbers stored in a binary
tree.

fun treesum :: “ntree ⇒ nat”

Prove the following correspondence between this function and the function listsum, which
sums up the elements of a list.

lemma “listsum (leaves t) = treesum t”

2


