
Technische Universität München WS 2010/11
Institut für Informatik 15. 11. 2010

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 4

It’s blatantly clear
You stupid machine, that what

I tell you is true

— Michael Norrish

Unlike the previous exercises, where the main challenge was to get the definitions right,
we now look at situations where Isabelle needs some guidance to find the proof, even
though the properties are intuitively clear.

Exercise 4.1 An alternative introduction rule for →∗

We consider the inductive definition of →∗ from theory Inductive Demo. Prove the
following lemma, first in apply-style, and then in a structured Isar proof.

lemma steps right : “ [[ x →∗ y ; y → z ]] =⇒ x →∗ z”

Exercise 4.2 Palindromes

Formalize the following inductive definition as a predicate palindrome :: nat list ⇒ bool :
• The empty list and a singleton list is a palindrome.

• If xs is a palindrome, then so is a#xs@[a].

Prove the following property:

lemma palindrome rev : “palindrome xs ←→ (rev xs = xs)”

Homework 4

Submission until Wednesday, November 24, 2010, 12:00 (noon).
Context-free grammars (CFGs) can be modelled as inductive definitions, just like palin-
drome above. We consider the set of valid (i.e., balanced) sequences of parentheses.

1



The most natural definition of valid sequences of parentheses can be written as the
following grammar over the alphabet {(, )}:

S → ε | ( S ) | S S

where ε is the empty word.
A second, somewhat unusual grammar is the following one:

T → ε | T ( T )

(a) Model both grammars as inductive sets S and T . As the type of symbols, you can
simply use the following datatype, where A and B stand for opening and closing
parentheses:

datatype symbol = A | B

(b) Prove that s = t, first in apply-style, and then with a structured Isar proof.

2


