Technische Universitat Miinchen WS 2010/11
Institut fiir Informatik 29. 11. 2010
Prof. Tobias Nipkow, Ph.D.
Sascha Bohme, Alexander Krauss

Semantics of Programming Languages

Exercise Sheet 6

This exercise builds on theory Small_Step.
To save some typing, download the theory Ex06_Template and fill in the gaps.

Exercise 6.1 Small step equivalence

We define an equivalence relation = on programs that uses the small-step semantics.
Unlike with ~, we also demand that the programs take the same number of steps.

The following relation is the n-steps reduction relation:

inductive
n_steps :: “com * state = nat = com * state = bool”
(“ —"__7160,1000,601999)

where

zero_steps: “cs — "0 ¢s” |
one_step: “cs — cs' = ¢s’ —"n cs'' = ¢s — "(Suc n) cs’”

Prove the following lemmas:

lemma small_steps_n: “cs —* c¢s’ = (In. cs = "n cs’)”
lemma n_small_steps: “cs — "n cs’ = cs —* cs'”

The equivalence relation is defined as follows:

definition
small_step_equiv :: “com = com = bool” (infix “~” 50) where
‘e~ c'==stn. (¢,s) = "n (SKIP, t) = (¢, s) = "n (SKIP, t))”

Prove the following lemma:

lemma small_equ_implies_big_equ: “c ~ ¢’ = ¢ ~ ¢'”

How about the reverse implication?



Homework 6

Submission until Wednesday, December 8, 2010, 12:00 (noon,).

In this execercise we extend our language with nondeterminism. We want to include
a command c¢; OR co, which expresses the nondeterministic choice between two com-
mands. That is, when executing ¢; OR ¢ either ¢ or c¢o may be executed, and it is not
specified which one.

(a) Modify the datatype com to include a new constructor Or.

(b) Adapt the big step semantics to include rules for the new construct.
(¢) Prove that ¢; OR ¢y ~ co2 OR c;.
)

(d) Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

Note: It is easiest if you take the existing theories and modify them. Please mark the
places where you did any modification, such that they can be immediately recognized.



