
Technische Universität München WS 2010/11
Institut für Informatik 10. 01. 2011

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 10

Exercise 10.1 Security type system: bottom-up with subsumption

Use the template file Ex10 Template.thy.

Recall security type systems for information flow control from the lecture. Such a type
systems can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

(a) Define a bottom-up security type system for information flow control with sub-
sumption rule.

(b) Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

Homework 10

Submission until Wednesday, January 26, 2011, 12:00 (noon). The first part (the defi-
nition) is already due on January 19.

Use the template file Dependency Template.thy.

The task is to define a dependency analysis between variables. We say that variable x
depends on y after command c if the value of y at the beginning of the execution of c
may influence the value of x at the end of the execution.

For example, consider the program y ::= 0 ; IF x ≤ 2 THEN y ::= x ELSE z ::= 0.

Here, the variable x depends only on itself, since it is never assigned.

The variable y clearly depends on x. It does not depend on itself, since it is initially
assigned a constant value, hence the original value is irrelevant.

The variable z depends on itself, since it may keep its value, but it also depends on x,
since the assignment to it occurs under a conditional depending on x.

In the program WHILE b DO (x ::= y ; y ::= z) the variable x depends on both y and
z (the value of z reaches x in the second iteration of the loop).

(a) Define an inductive relation influences :: name ⇒ com ⇒ name ⇒ bool which
specifies a dependency analysis.

1

(b) Prove its soundness w.r.t. to the big-step semantics. That is, prove the lemma

lemma deps sound :
“ [[(c, s) ⇒ t ; s = s ′ on deps c x ; (c, s ′) ⇒ t ′]]
=⇒ t x = t ′ x”

where deps c x abbreviates {y . influences y c x}.

2

