
Teaching Semantics with a Proof Assistant

or

No more “LSD trip proofs”

Tobias Nipkow

Fakultät für Informatik
TU München



The problem: students and proofs

NP-completeness reductions done in the
wrong direction

Arguments that start out by assuming
what has to be proved

Proofs that look more like LSD trips than
coherent chains of logic

Scott Aaronson (MIT)



Majority of informatics students

Proofs



Disclaimer

Not (entirely) the students’ fault

• Writing precise proofs is not demanded outside
theory/formal methods courses.

• Even there, it is often incorrectly assumed,
or not demanded for fear of the cost incurred.



A glimmer of hope

Proof Assistants



What is a proof assistant (PA)

An interactive tool

for constructing

mathematical definitions and proofs

The ideal:

• the user gives the proof outline

• the system fills in the routine steps



The proof assistant universe

ACL2

Agda

Coq

HOL

HOL Light

IsabelleMizar

PVS



The hope

Proof Assistant = Video Game





1 The Starting Point

2 Aims

3 Presentation

4 Course overview

5 Course Evaluation

6 Conclusion



Tobias Nipkow. Winskel is (almost) Right:
Towards a Mechanized Semantics Textbook.
In: Proceedings FSTTCS 1996.

Formalized the first 100 pages of Winskel’s
Semantics textbook in Isabelle.

Used in my teaching since then.

Without forcing the students to write formal proofs.

But writing proofs requires PRACTICE.



An experiment (WS 2010/11)

Practice via use of PA in Semantics course

PA gives immediate feedback and is

• untiring

• unerring

• pedantic

• impartial



Programming Language
Semantics course at TUM

• ≈ 15 MSc students

• theory section of curriculum, 8 ECTS

• 2 × 90 minutes lectures / week

• 90 minutes exercise class / week

• 14 weeks



Homework — the key!

• In the past: homework did not count.

• Predictable result: some do it, some don’t.

• Now: homework 40% of final grade.

• Homework based entirely on proof assistant.



1 The Starting Point

2 Aims

3 Presentation

4 Course overview

5 Course Evaluation

6 Conclusion



2 Aims
Semantics versus Proofs
What Kind of Proofs?
Which Semantics?



We want the Semantics dog to wag its PA tail:

Not the other way around!



Semantics with a proof assistant

Not

Theorem Proving with semantics examples



2 Aims
Semantics versus Proofs
What Kind of Proofs?
Which Semantics?



Teach structured (readable) proofs,

not proof scripts



proof(induct n)

assume formula
have formula by ...
...

have formula by ...

show formula by ...

qed

apply(...)
...
apply(...)

done

nontransferable skill



However . . .

• Proof scripts are easier to learn and to hack.
At least for small proofs.

• Also useful for “proof debugging”

=⇒ We start with simple proof scripts
and upgrade to structured proofs soon after.



Proof versus logic

Do not teach logic,

teach how to write proofs.

???



• Single step natural deduction proofs
belong in logic courses.

• Application-oriented courses
should reason modulo logic.

• If you believe that A and B imply C,
write

from A and B have C by auto

and let the machine perform the proof.

• If it cannot, refine proof.

Not a new idea: Mizar



In a nutshell

Do not let logic dominate your thinking.

Not a new idea: Mathematics

Needs good automation to work well.

Issue: when automation fails,
proof scripts simplify debugging



2 Aims
Semantics versus Proofs
What Kind of Proofs?
Which Semantics?



Operational semantics

of a simple imperative language.

• Focus on one language

• Present spectrum of concepts and applications

Student comment:
I thought theoreticians do not like
imperative languages and prefer the
λ-calculus?



1 The Starting Point

2 Aims

3 Presentation

4 Course overview

5 Course Evaluation

6 Conclusion



Initially:

Mainly live demos
of Isabelle specifications and proofs

Once the students are familiar with Isabelle
(after 1/3 of the course):

More slides and blackboard



I believe in blackboard and slides

for presenting concepts and proofs.



The benefits of
structured Isabelle proofs

• Close to standard proofs

• Ease the move from Isabelle to blackboard

• Provide language for blackboard proofs



1 The Starting Point

2 Aims

3 Presentation

4 Course overview

5 Course Evaluation

6 Conclusion



Isabelle:
Functional programming

• Natural numbers and lists

• Recursive datatypes and functions

• Proof by induction

Typical proof:

apply(induct ...)

apply auto

done



Challenges:

• syntax, syntax, syntax

• finding auxiliary lemmas

• getting definitions right

User experience:

frustration but fascination



Expressions

A first (motivating!) glimpse of semantics:

• Arithmetic and boolean expressions

• State

• Evaluation functions

• Expression optimization

• Stack machine

• Compilation to stack machine

Proofs still induct-auto



Isabelle:
Logic and proofs

• Logic: hardly more than syntax of formulas
• Proofs

• Automation
• Structured proofs



Introductory example:

lemma Cantor: ¬surj(f :: α→ (α)set)
proof

assume surj(f)
hence ∃a. f(a) = {x | x /∈ f(x)}

by(auto simp: surj-def)

thus False by blast

qed

Not typical for later proofs



Automation

The students’ best friend: Sledgehammer

Employs external automatic provers to find proofs.



Student comment:
Isabelle’s automation makes me lazy.

I approve of this!

Isabelle does not work magic.
It merely automates the obvious. Mostly.



Isabelle:
Inductively defined predicates

• The idea: simple enough

• Rule induction: a new and nontrivial concept

Main problem: when to induct on what



After 4 weeks (≈ 1/4 semester),
the logical foundations are in place.

Now Semantics takes over.



IMP

A simple imperative language:

com ::= SKIP

| nat := aexp

| com ; com

| IF bexp THEN com ELSE com

| WHILE bexp DO com

The rest of the semester focuses on IMP.



• Big and small-step semantics

• Stack machine and compiler

• Type system

• Static analyses: definite assignment, liveness

• Information-flow security type systems

• Hoare logic

• Verification condition generation

• Extensions of IMP

Semantic correctness of each concept is proved
Almost everything is executable



Sample semantics
(SKIP,s) ⇒ s |

(x := a,s) ⇒ s(x := aval a s) |

(c1,s1) ⇒ s =⇒ (c2,s2) ⇒ s3

=⇒ (c1;c2, s1) ⇒ s3 |

bval b s =⇒ (c1,s) ⇒ t

=⇒ (IF b THEN c1 ELSE c2, s) ⇒ t |

¬ bval b s =⇒ (c2,s) ⇒ t

=⇒ (IF b THEN c1 ELSE c2, s) ⇒ t |

¬ bval b s =⇒ (WHILE b DO c,s) ⇒ s |

bval b s1 =⇒ (c,s1) ⇒ s2

=⇒ (WHILE b DO c, s2) ⇒ s3

=⇒ (WHILE b DO c, s1) ⇒ s3



Sample proof
lemma hoare-sound: ` {P}c{Q} =⇒ |= {P}c{Q}
proof(induct rule: hoare.induct)

case (While P b c)

{ fix s t

have (WHILE b DO c,s) ⇒ t

=⇒ P s =⇒ P t ∧ ¬ bval b t

proof(induct rule: big-step-induct)

case WhileFalse thus ?case by blast

next

case WhileTrue thus ?case using While(2)

unfolding hoare-valid-def by blast

qed

}
thus ?case unfolding hoare-valid-def by blast

qed (auto simp: hoare-valid-def)



Sample homework (2 weeks)

Define a dependency analysis between variables.
We say that x depends on y after command c
if the value of y before the execution of c
may influence the value of x after the execution.

Prove its soundness w.r.t. to the big-step semantics.



1 The Starting Point

2 Aims

3 Presentation

4 Course overview

5 Course Evaluation

6 Conclusion



Claim

It is challenging.

It is motivating.

It is exciting.

It works!



Evidence

• Practically everybody hands in homework
— unheard of in the past

• Homework grades: 88% of points (on avg)

• Only one attempt at cheating detected

• Student evaluation of contents of course:
improved from 2.1 to 1.6 (on avg)
[scale: 1–5, avg = 2.3]

• Avg grade in final (oral!) exam: 1.6



Anonymous student feedback
Learning to use a theorem prover is exciting.

Thanks for offering this great course!

In general really good but very demanding course.

Homework is too time consuming, with all the
syntax problems etc. [≈ 8 hours/week]

I will certainly recommend this course to other
students.

It is really difficult to find something bad about this
course :-)



Why the proof part works

• Small repertoire of proof principles:
induction, simplification, case distinction, logic

• Standard proof pattern: induction, in each case
combining assumptions to reach conclusion,
maybe with a case distinction

• Proof automation

• Background theories:
only natural numbers and lists

• Very focused material: IMP

• We are excited about the new course



1 The Starting Point

2 Aims

3 Presentation

4 Course overview

5 Course Evaluation

6 Conclusion



Mission accomplished



Help yourself!

• 500 LATEX-beamer slides

• Isabelle theories

• Exercises and homework

www.in.tum.de/~nipkow/semantics

www.in.tum.de/~nipkow/semantics


Related courses

• Benjamin Pierce, Software Foundations,
U of Pennsylvania, Coq

• Christian Urban, Semantics, TUM, Isabelle

• Rex Page, Software Engineering,
U of Oklahoma, ACL2

• Matthias Felleisen, Logic, Northeastern U,
ACL2

• . . . ?



Other areas
ripe for the PA treatment (?)

• Any area concerned mostly with syntactic
structures:
; Programming Languages and Logic

• Avoid subjects where proof steps are trivial for
the student but tedious on the machine —
demotivating.

We need more experiments!


	The Starting Point
	Presentation

