
Technische Universität München WS 2012/13
Institut für Informatik 23. 10. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be obtained from http://www21.in.tum.de/teaching/semantik/WS1213/IMP/. Copy
them into the same directory as your Ex02.thy file, and add them to your imports as
follows:

theory Ex02
imports Main AExp BExp
begin

Exercise 2.1 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic
substitution, i.e., subst x a ′ a shall be the expression a where every occurrence of variable
x has been replaced by expression a ′.

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (subst x a ′ a) s = aval a (s(x :=aval a ′ s))”

Note: The expression s(x :=v) updates a function at point x. It is defined as:

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp:
“aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

1

http://www21.in.tum.de/teaching/semantik/WS1213/IMP/

Exercise 2.2 Arithmetic Expressions With Side-Effects and Exceptions

We want to extend arithmetic expressions by the division operation and by the postfix
increment operation x++, as known from Java or C++.

The problem with the division operation is that division by zero is not defined. In this
case, the arithmetic expression should evaluate to a special value indicating an exception.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
(val×state) option, i.e., it takes an expression and a state, and returns a value and a
new state, or an error value. Define the function aval ′.

(Hint: To make things easier, we recommend an incremental approach to this exercise:
First define arithmetic expressions with incrementing, but without division. The function
aval ′ for this intermediate language should have type aexp ′⇒ state ⇒ val×state. After
completing the entire exercise with this version, then modify your definitions to add
division and exceptions.)

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “aval ′ (Div ′ (V ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Div ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) < ′′x ′′:=1>”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc: “aval ′ a s = Some (v ,s ′) =⇒ s x ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split : split if asm option.splits).

2

Homework 2.1 Exclusive Or

Submission until Tuesday, October 30, 10:00am.

Write a function xor that takes two boolean expressions a::bexp and b::bexp, and returns
a boolean expression c such that for all states s::state: bval c s ←→ (bval a s 6= bval b
s).

Prove that your function is correct.

definition xor :: “bexp ⇒ bexp ⇒ bexp” where

lemma “bval (xor a b) s ←→ bval a s 6= bval b s”

Homework 2.2 Tail-Recursive Multiplication

Submission until Tuesday, October 30, 10:00am.

The list-reversing function itrev is an example of a tail-recursive function: Note that
the right-hand side of the second equation for itrev is simply an application of itrev to
different arguments.

fun itrev :: “ ′a list ⇒ ′a list ⇒ ′a list” where
“itrev [] ys = ys” |
“itrev (x#xs) ys = itrev xs (x#ys)”

In this homework problem you will define in Isabelle a tail-recursive version of multi-
plication for natural numbers, using an auxiliary argument. More precisely, you should
define a function mult :: nat ⇒ nat ⇒ nat ⇒ nat such that ∀ x y . mult x y 0 = x ∗ y.
Like itrev, your definition should be tail-recursive: in the recursive case the right-hand
side should be just an application of mult to different arguments. The only functions
you are allowed to use in the recursive clauses for mult are Suc and +.

First you need to define the function:

fun mult :: “nat ⇒ nat ⇒ nat ⇒ nat”

Then you need to prove that mult is correct:

lemma mult correct : “mult x y 0 = x ∗ y”

Hint: In order to prove the above lemma, you may first need to prove a more general
fact about mult (employing an arbitrary argument z instead of 0), of which the above
lemma is a particular case.

3

Homework 2.3 Associativity of Addition

Submission until Tuesday, October 30, 10:00am.

Note: This is a “bonus” exercise worth five additional points, making the maximum
possible score for all homework on this sheet 15 out of 10 points.

In this assignment, you shall write an arithmetic expression optimizer that summarizes
all constants that occur in an expression to a single constant. For example, Plus (N 1)
(Plus (N 2) (V ′′x ′′)) shall become Plus (N 3) (V ′′x ′′).

Note that there is a function asimp in AExp.thy that eliminates zeroes and evaluates
constant subexpressions, but cannot handle the above case, as it does not know about
associativity.

In this exercise, the approach will be a bit different. First, write a function collect const
:: aexp ⇒ int that returns the sum of all constants in an expression. Next, write a
function zero const :: aexp ⇒ aexp that replaces all constants in an expression by zeroes
(they will be optimized away later).

fun collect const :: “aexp ⇒ int” where
fun zero const :: “aexp ⇒ aexp” where

Next, define a function move const :: aexp ⇒ aexp that produces an arithmetic ex-
pression that adds the results of collect const and zero const. Show that move const
preserves the value of an expression.

definition move const :: “aexp ⇒ aexp” where
lemma aval move const [simp]: “aval (move const t) s = aval t s”

Finally, define a function full asimp :: aexp ⇒ aexp, that uses asimp to eliminate the
zeroes left over by move const, and show that it preserves the value of arithmetic ex-
pressions.

definition full asimp :: “aexp ⇒ aexp” where
lemma aval full asimp[simp]: “aval (full asimp t) s = aval t s”

4

