
Technische Universität München WS 2012/13
Institut für Informatik 20. 11. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 Small step equivalence

We define an equivalence relation ≈ on programs that uses the small-step semantics.
Unlike with ∼, we also demand that the programs take the same number of steps.

The following relation is the n-steps reduction relation:

inductive
nsteps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool”
(“ →ˆ ” [60 ,1000 ,60]999)

where
zero steps: “cs →ˆ0 cs” |
one step: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

Prove the following lemmas:

lemma small steps n: “cs →∗ cs ′ =⇒ (∃n. cs →ˆn cs ′)”
lemma n small steps: “cs →ˆn cs ′ =⇒ cs →∗ cs ′”
lemma nsteps trans: “cs →ˆn1 cs ′ =⇒ cs ′→ˆn2 cs ′′ =⇒ cs →ˆ(n1+n2) cs ′′”

The equivalence relation is defined as follows:

definition
small step equiv :: “com ⇒ com ⇒ bool” (infix “≈” 50) where
“c ≈ c ′ == (∀ s t n. (c,s) →ˆn (SKIP , t) = (c ′, s) →ˆn (SKIP , t))”

Prove the following lemma:

lemma small eqv implies big eqv : “c ≈ c ′ =⇒ c ∼ c ′”

How about the reverse implication?

Exercise 6.2 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack,
similar to arithmetic expressions:

• The boolean value False is represented by the number 0, the boolean value True
is represented by any number not equal to 0.

1

• For every boolean operation there exists a corresponding instruction which, simi-
larly to arithmetic instructions, operates on values on top of the stack.

• The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to False, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

end

2

Homework 6.1 Algebra of Commands

Submission until Tuesday, November 27, 10:00am.

We define an extension of the language with nondeterministic choice (OR) and parallel
composition (‖), for which we consider the small-step equivalence relation ≈ defined in
Exercise 6.1. For your convenience, all the necessary notions are (re)defined below. A
template file will also be provided for you.

Your task will be to prove various algebraic laws for the small-step equivalence. The
most helpful methods will be number induction and/or pair-based rule induction over
the nsteps relation, using nsteps induct (provided below).

datatype
com =

— sequential part as before —
| Or com com (infix “OR” 59)
| Par com com (infix “ ‖” 59)

inductive
small step :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→” 55)

where
— sequential part as before —
OrL: “ (c1 OR c2 ,s) → (c1 ,s)” |
OrR: “ (c1 OR c2 ,s) → (c2 ,s)” |
ParL: “ (c1 ,s) → (c1 ′,s ′) =⇒ (c1 ‖ c2 ,s) → (c1 ′ ‖ c2 ,s ′)” |
ParLSkip: “ (SKIP ‖ c,s) → (c,s)” |
ParR: “ (c2 ,s) → (c2 ′,s ′) =⇒ (c1 ‖ c2 ,s) → (c1 ‖ c2 ′,s ′)” |
ParRSkip: “ (c ‖ SKIP ,s) → (c,s)”

inductive
nsteps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool”
(“ →ˆ ” [60 ,1000 ,60]999)

where
zero steps[simp,intro]: “cs →ˆ0 cs” |
one step[intro]: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

lemmas nsteps induct = nsteps.induct [split format(complete)]

definition
small step equiv :: “com ⇒ com ⇒ bool” (infix “≈” 50) where
“c ≈ c ′ ≡ (∀ s t n. (c,s) →ˆn (SKIP , t) ←→ (c ′, s) →ˆn (SKIP , t))”

As a demo, we prove that OR is commutative (w.r.t. ≈). The proof here goes in two
steps: first lemma Or commute n, then the desired fact Or commute by simply unfolding
the definition.

lemma Or commute n: “ (c OR d , s) →ˆn (SKIP , t) =⇒ (d OR c, s) →ˆn (SKIP , t)”
by (induct n arbitrary : c d) (fastforce intro: one step OrL OrR)+

3

lemma Or commute: “c OR d ≈ d OR c”
unfolding small step equiv def using Or commute n by blast

Now it’s your turn to prove commutativity and associativity of ‖. You are free to do
either automatic or Isar proofs.

lemma Par commute: “c ‖ d ≈ d ‖ c”

lemma Par assoc: “ (c ‖ d) ‖ e ≈ c ‖ (d ‖ e)”

The last task of this exercise is to prove distributivity of ; over Or, namely, lemma
Seq Or distrib below. This will be harder then the other proofs, and therefore we provide
some guidelines.

First, you should prove the following inversion rules for Or and ; w.r.t. nsteps. (Most
likely you will need an Isar proof for the second.)

lemma Or nsteps invert :
assumes “ (c OR d , s) →ˆn (SKIP , t)”
shows “ ∃ n1 . n = Suc n1 ∧ ((c,s) →ˆn1 (SKIP ,t) ∨ (d , s) →ˆn1 (SKIP , t))”

lemma Seq nsteps invert :
assumes “ (c ; d , s) →ˆn (SKIP , t)”
shows “ ∃ n1 n2 s1 . n = Suc (n1 + n2) ∧ (c,s) →ˆn1 (SKIP ,s1) ∧ (d , s1) →ˆn2 (SKIP , t)”

Next, we put the above rules in a nicer elimination format:

lemma Or nsteps elim[elim]:
assumes “ (c OR d , s) →ˆn (SKIP , t)”
and “

∧
n1 . [[n = Suc n1 ; (c,s) →ˆn1 (SKIP ,t)]] =⇒ P”

and “
∧

n1 . [[n = Suc n1 ; (d ,s) →ˆn1 (SKIP ,t)]] =⇒ P”
shows P
using assms Or nsteps invert by blast

lemma Seq nsteps elim[elim]:
assumes “ (c ; d , s) →ˆn (SKIP , t)” and
“
∧

n1 n2 s1 . [[n = Suc (n1 + n2); (c,s) →ˆn1 (SKIP ,s1); (d ,s1) →ˆn2 (SKIP , t)]] =⇒ P”
shows P
using assms Seq nsteps invert by blast

Now, you should prove introduction rules for Or and ; w.r.t. nsteps:

lemma Or nsteps introL[intro]:
assumes “ (c,s) →ˆn (SKIP ,t)” shows “ (c OR d , s) →ˆ(Suc n) (SKIP ,t)”

lemma Or nsteps introR[intro]:
assumes “ (d ,s) →ˆn (SKIP ,t)” shows “ (c OR d , s) →ˆ(Suc n) (SKIP ,t)”

lemma Seq nsteps intro[intro]:
assumes 1 : “ (c,s) →ˆn1 (SKIP ,s1)” and 2 : “ (d ,s1) →ˆn2 (SKIP , t)”
shows “ (c ; d , s) →ˆ(Suc (n1 + n2)) (SKIP , t)”

4

Hint for the proof of Seq nsteps intro: Follow a similar route to the proof of the corre-
sponding fact about→∗ from theory Small Step, namely, seq comp. Lemma nsteps trans
from Exercise 6.1 is also needed.

Finally, you can prove the desired distributivity law. Hint: If a fully automatic proof
does not work, try an Isar proof of the two implications emerging from ←→ by applying
the correct introduction/elimination rules by hand.

lemma Seq Or distrib n:
“ (c ; (d OR e), s) →ˆn (SKIP , t) ←→ ((c ; d) OR (c ; e), s) →ˆn (SKIP , t)”

lemma Seq Or distrib: “c ; (d OR e) ≈ (c ; d) OR (c ; e)”

5

Homework 6.2 Powerset Construction

Submission until Tuesday, November 27, 10:00am.

Note: This is a “bonus” exercise worth 5+3 additional points, making the maximum
possible score for all homework on this sheet 18 out of 10 points. You’ll get 5 points for
proving the lemmas, and additional 3 points for aesthetics of your proof, i.e., a confusing
apply-style script that somehow manages to prove the theorems is worth 5 points, while
a nice Isar-proof that makes clear the structure of the proof is worth 8 points.

Reconsider the finite state machines (FSMs) from Homework 4.

type synonym (′Q , ′Σ) LTS = “ (′Q× ′Σ× ′Q) set”
inductive accept :: “ ′Q set ⇒ (′Q , ′Σ) LTS ⇒ ′Q ⇒ ′Σ list ⇒ bool”

for F δ where
base: “q∈F =⇒ accept F δ q []”
| step[trans]: “ [[(q ,a,q ′)∈δ; accept F δ q ′ w]] =⇒ accept F δ q (a#w)”

In this exercise, you shall define the well-known powerset construction, that converts
any finite state machine to a deterministic one.

First define the transition relation and the set of accepting states of the powerset-FSM:

definition pow δ :: “ (′Q , ′Σ) LTS ⇒ (′Q set , ′Σ) LTS”
definition pow F :: “ ′Q set ⇒ ′Q set set”

Then prove that the transition relation of the powerset-FSM is deterministic. (Note:
If you got your definitions right, this proof is a one-liner, and requires no elaborate
Isar-proof!)

lemma pow δ det : “ [[(q ,a,q ′)∈pow δ δ; (q ,a,q ′′)∈pow δ δ]] =⇒ q ′=q ′′”

Finally prove that the powerset construction does not change the words accepted by a
state. (Note: It’s best (really!) to elaborate this proof on paper first, and then convert
it into an Isar-proof. You should prove both directions separately, and you will need to
generalize the statement in order to get the induction through.)

theorem pow correct :
“accept F δ q w ←→ accept (pow F F) (pow δ δ) {q} w”

6

