
Technische Universität München WS 2013/14
Institut für Informatik 22. 10. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 2

Exercise 2.1 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic
substitution, i.e., subst x a ′ a shall be the expression a where every occurrence of variable
x has been replaced by expression a ′.

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (subst x a ′ a) s = aval a (s(x :=aval a ′ s))”

Note: The expression s(x :=v) updates a function at point x. It is defined as:

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.2 Arithmetic Expressions With Side-Effects and Exceptions

We want to extend arithmetic expressions by the division operation and by the postfix
increment operation x++, as known from Java or C++.

The problem with the division operation is that division by zero is not defined. In this
case, the arithmetic expression should evaluate to a special value indicating an exception.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

1

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
(val×state) option, i.e., it takes an expression and a state, and returns a value and a
new state, or an error value. Define the function aval ′.

(Hint: To make things easier, we recommend an incremental approach to this exercise:
First define arithmetic expressions with incrementing, but without division. The function
aval ′ for this intermediate language should have type aexp ′⇒ state ⇒ val×state. After
completing the entire exercise with this version, then modify your definitions to add
division and exceptions.)

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “aval ′ (Div ′ (V ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Div ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) < ′′x ′′:=1>”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc: “aval ′ a s = Some (v ,s ′) =⇒ s x ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split : split if asm option.splits).

Homework 2.1 Constant Multiplication

Submission until Tuesday, October 29, 10:00am.

Write a function multn that takes a natural number n::nat and an arithmetic expressions
a::aexp, and returns an arithmetic expression b such that for all states s::state:
aval (multn n a) s = int n ∗ aval a s.

Prove that your function is correct.

fun multn :: “nat ⇒ aexp ⇒ aexp” where
lemma “aval (multn n a) s = int n ∗ aval a s”

2

Homework 2.2 Tail-Recursive Counting

Submission until Tuesday, October 29, 10:00am.

The list-reversing function itrev is an example of a tail-recursive function: Note that the
right-hand side of the second equation for itrev is simply an application of itrev to some
arguments.

fun itrev :: “ ′a list ⇒ ′a list ⇒ ′a list” where
“itrev [] ys = ys” |
“itrev (x#xs) ys = itrev xs (x#ys)”

In this homework problem you will define in Isabelle a tail-recursive version of count
(which counts the number of occurrences of a particular element in a list), using an
auxiliary argument. More precisely, you should define a function count tr :: ′a list ⇒ ′a
⇒ nat ⇒ nat such that ∀ xs y . count tr xs y 0 = count xs y. Like itrev, your definition
should be tail-recursive: in the recursive case the right-hand side should only consist of
if-expressions, case-distinctions and recursive applications of count tr.

First you need to define the function:

primrec count tr :: “ ′a list ⇒ ′a ⇒ nat ⇒ nat” where

Then you need to prove that count tr is correct. Here, count is the function from exercise
1.2, you can copy it from the sample solution.

lemma “count tr xs y 0 = count xs y”

Hint: In order to prove the above lemma, you may first need to prove a more general fact
about count tr (employing an arbitrary argument n instead of 0), of which the above
lemma is a particular case.

Homework 2.3 Disjunctive Normal Form

Submission until Tuesday, October 29, 10:00am.

Note: This is a “bonus” assignment worth five additional points, making the maximum
possible score for all homework on this sheet 15 out of 10 points.

Warning: This assignment is quite hard. Also partial solutions will be graded!

In this assignment, you shall write a function that converts a boolean expression over
variables, conjunction, disjunction, and negation to disjunctive normal form, and prove
its correctness. A template for this homework is available on the lecture’s homepage.

We start by defining our version of boolean expressions:

datatype bexp = Not bexp | And bexp bexp | Or bexp bexp | Var vname
fun bval :: “bexp ⇒ state ⇒ bool” — Definition in template

Next, we define functions that check whether a boolean exression is in DNF or NNF.

3

fun is dnf :: “bexp ⇒ bool” — Definition in template
fun is nnf :: “bexp ⇒ bool” — Definition in template

An approach to convert a boolean expression to DNF is to first convert it to NNF
(negation normal form), and then apply the distributivity laws to get the DNF. Thus,
start with defining a function that converts any boolean expression to NNF. This can
be done by ”pushing in” negations, and eliminating double negations.

fun to nnf :: “bexp ⇒ bexp” where

Prove that your function is correct. Hint: use the induction rule generated by the function
package, the syntax is: induction b rule: to nnf .induct

lemma [simp]: “is nnf (to nnf b)”

lemma [simp]: “bval (to nnf b) s = bval b s”

The basic idea of converting an NNF to DNF is to first convert the operands of a
conjunction, and then apply the distributivity law to get a disjunction of conjunctions.
The function merge (a1∨. . .∨an) (b1∨. . .∨bm) shall return a term of the form a1∧b1 ∨
a1∧b2 ∨ . . . an∧bm that is equivalent to (a1∨. . .∨an) ∧ (b1∨. . .∨bm).

fun merge :: “bexp ⇒ bexp ⇒ bexp” where

Show that merge preserves the semantics and indeed yields a DNF, if its operands are
already in DNF. Hint: For functions over multiple arguments, the syntax for induction
is induction a b rule: merge.induct

lemma [simp]: “bval (merge a b) s ←→ bval (And a b) s”

lemma [simp]: “is dnf a =⇒ is dnf b =⇒ is dnf (merge a b)”

Next, use merge to write a function that converts an NNF to a DNF. The idea is to
first convert the operands of a compound expression, and then compute the overall DNF
(using merge in the And -case)

fun nnf to dnf :: “bexp ⇒ bexp” where

Prove the correctness of your function:

lemma [simp]: “bval (nnf to dnf b) s = bval b s”

lemma [simp]: “is nnf b =⇒ is dnf (nnf to dnf b)”

Finally, combine the two functions to nnf and nnf to dnf, to get a function that converts
any boolean expression to DNF:

definition convert to dnf :: “bexp ⇒ bexp”

theorem [simp]: “bval (convert to dnf b) s = bval b s”
theorem [simp]: “is dnf (convert to dnf b)”

4

