
Technische Universität München WS 2013/14
Institut für Informatik 21. 1. 2014

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Complete Lattices: GLB of UBs is LUB

Formalize the pen-and-paper proof from last homework (HW 11.1) as Isar-proof. Try to
produce a proof whose structure is similar to the pen-and-paper proof.

definition “Sup ′ (S :: ′a::complete lattice set) ≡ Inf {u. ∀ s∈S . s≤u}”

lemma Sup ′ upper : “ ∀ s∈S . s ≤ Sup ′ S”
lemma Sup ′ least :

assumes upper : “ (∀ s∈S . s≤u)”
shows “Sup ′ S ≤ u”

Exercise 12.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice
pos, zero, neg, any, where pos abstracts positive values, zero abstracts zero, neg ab-
stracts negative values, and any abstracts any value.

For this exercise, you best modify the parity analysis src/HOL/IMP/Abs Int1 parity

Homework 12.1 Small/Big Analysis

Submission until Tuesday, 28. 1.2014, 10:00am. Instantiate the abstract interpretation
framework to find out which variables have values in the range {−128 . . . 127}, i.e. fit
into one byte.

Start your development from src/HOL/IMP/Abs Int1 parity. You do not need to show
termination.

Homework 12.2 Kleene fixed point theorem

Submission until Tuesday, 28. 1.2014, 10:00am. Prove the Kleene fixed point theorem.
We first introduce some auxiliary definitions:

1

A chain is a set such that any two elements are comparable. For the purposes of the
Kleene fixed-point theorem, it is sufficient to consider only countable chains. It is easiest
to formalize these as ascending sequences. (We can obtain the corresponding set using
the function range :: (′a ⇒ ′b) ⇒ ′b set.)

definition chain :: “ (nat ⇒ ′a::complete lattice) ⇒ bool”
where “chain C ←→ (∀n. C n ≤ C (Suc n))”

A function is continuous, if it commutes with least upper bounds of chains.

definition continuous :: “ (′a::complete lattice ⇒ ′b::complete lattice) ⇒ bool”
where “continuous f ←→ (∀C . chain C −→ f (Sup (range C)) = Sup (f ‘ range C))”

The following lemma may be handy:

lemma continuousD : “ [[continuous f ; chain C]] =⇒ f (Sup (range C)) = Sup (f ‘ range C)”
unfolding continuous def by auto

As warm-up, show that any continuous function is monotonic:

lemma cont imp mono:
fixes f :: “ ′a::complete lattice ⇒ ′b::complete lattice”
assumes “continuous f”
shows “mono f”

Hint: The relevant lemmas are

thm mono def monoI monoD

Finally show the Kleene fixed point theorem. Note that this theorem is important, as it
provides a way to compute least fixed points by iteration.

theorem kleene lfp:
fixes f :: “ ′a::complete lattice ⇒ ′a”
assumes CONT : “continuous f”
shows “lfp f = Sup (range (λi . (fˆˆi) bot))”

proof −

We propose a proof structure here, however, you may deviate from this and use your own proof
structure:

let ?C = “λi . (fˆˆi) bot”
note MONO=cont imp mono[OF CONT]

have CHAIN : “chain ?C”
show ?thesis
proof (rule antisym)

show “Sup (range ?C) ≤ lfp f”
next

show “lfp f ≤ Sup (range ?C)”
qed

qed

Hint: Some relevant lemmas are

thm lfp unfold lfp lowerbound Sup subset mono range eqI

2

