Semantics of Programming Languages

Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and write the the following three lines at the top of this file.

theory Ex01 imports Main begin

Exercise 1.1 Calculating with natural numbers

Use the **value** command to turn Isabelle into a fancy calculator and evaluate the following natural number expressions:

"(2::nat)" "(2::nat) * (5 + 3)" "(3::nat) * 4 - 2 * (7 + 1)" Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a list.

fun count :: "'a list \Rightarrow 'a \Rightarrow nat"

Test your definition of *count* on some examples and prove that the results are indeed correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation between *count* and *length*, the function returning the length of a list.

theorem "count xs $x \leq length xs$ "

Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function *snoc* that appends an element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: "'a list \Rightarrow 'a \Rightarrow 'a list"

Convince yourself on some test cases that your definition of *snoc* behaves as expected, for example run:

value "snoc [] c"

Also prove that your test cases are indeed correct, for instance show:

lemma "snoc [] c = [c]"

Next define a function *reverse* that reverses the order of elements in a list. (Do not use the existing function *rev* from the library.) Hint: Define the reverse of x # xs using the *snoc* function.

fun reverse :: "'a list \Rightarrow 'a list"

Demonstrate that your definition is correct by running some test cases, and proving that those test cases are correct. For example:

value "reverse [a, b, c]" lemma "reverse [a, b, c] = [c, b, a]"

Prove the following theorem. Hint: You need to find an additional lemma relating *reverse* and *snoc* to prove it.

theorem "reverse (reverse xs) = xs"

Homework 1.1 List-Sum

Submission until Tuesday, October 21, 10:00am.

Mail a theory file named FirstnameLastname01.thy (replace with your name!) which runs in Isabelle-2015 without errors to *lammichatindottumdotde*.

General hints:

- If you cannot prove a lemma, that you need for a subsequent proof, assume this lemma by using sorry.
- Define the functions as simple as possible. In particular, do not try to make them tail recursive by introducing extra accumulator parameters this will complicate the proofs!
- Nitpick, Quickcheck, and Sledgehammer are your friends!
- All proofs should be straightforward, and take only a few lines.

Define a function that adds up the elements of a list:

 $\mathbf{fun} \ lsum :: \ ``nat \ list \Rightarrow nat"$

Prove that reversing the list does not affect its sum.

lemma "lsum (reverse xs) = lsum xs"

Hint: Induction. You may need an auxiliary lemma about *lsum* and *snoc*.

Write a function that, for argument n generates the list [1..n]:

 $\mathbf{fun} \ \textit{nlist} :: \ \textit{``nat} \ \Rightarrow \ \textit{nat} \ \textit{list''}$

Prove the well-known Gauss-formula:

lemma "lsum (nlist n) = n * (n+1) div 2"