
Technische Universität München WS 2015/16
Institut für Informatik 13. 10. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and
write the the following three lines at the top of this file.

theory Ex01

imports Main

begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:

“2 + (2 ::nat)” “ (2 ::nat) ∗ (5 + 3 )” “ (3 ::nat) ∗ 4 − 2 ∗ (7 + 1 )”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x ≤ length xs”

1



Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of x # xs using the
snoc function.

fun reverse :: “ ′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, c]”
lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.

theorem “reverse (reverse xs) = xs”

Homework 1.1 List-Sum

Submission until Tuesday, October 21, 10:00am.

Mail a theory file named FirstnameLastname01.thy (replace with your name!) which
runs in Isabelle-2015 without errors to lammichatindottumdotde.

General hints:

• If you cannot prove a lemma, that you need for a subsequent proof, assume this
lemma by using sorry.

• Define the functions as simple as possible. In particular, do not try to make them
tail recursive by introducing extra accumulator parameters — this will complicate
the proofs!

• Nitpick, Quickcheck, and Sledgehammer are your friends!

• All proofs should be straightforward, and take only a few lines.

Define a function that adds up the elements of a list:

fun lsum :: “nat list ⇒ nat”

2



Prove that reversing the list does not affect its sum.

lemma “lsum (reverse xs) = lsum xs”

Hint: Induction. You may need an auxiliary lemma about lsum and snoc.

Write a function that, for argument n generates the list [1..n]:

fun nlist :: “nat ⇒ nat list”

Prove the well-known Gauss-formula:

lemma “lsum (nlist n) = n ∗ (n+1 ) div 2”

3


