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Exercise 3.1 Relational aval

Theory AExp defines an evaluation function aval :: aexp ⇒ state ⇒ val for arithmetic
expressions. Define a corresponding evaluation relation is aval :: aexp ⇒ state ⇒ val
⇒ bool as an inductive predicate:

inductive is aval :: “aexp ⇒ state ⇒ val ⇒ bool”

Use the introduction rules is aval .intros to prove this example lemma.

lemma “is aval (Plus (N 2 ) (Plus (V x ) (N 3 ))) s (2 + (s x + 3 ))”

Prove that the evaluation relation is aval agrees with the evaluation function aval. Show
implications in both directions, and then prove the if-and-only-if form.

lemma aval1 : “is aval a s v =⇒ aval a s = v”
lemma aval2 : “aval a s = v =⇒ is aval a s v”
theorem “is aval a s v ←→ aval a s = v”

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values – e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.

fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec comp to show that programs output by the com-
piler never underflow the stack:

theorem exec comp: “exec (comp a) s stk = Some (aval a s # stk)”
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Exercise 3.3 Avoiding Stack Overflow

Now, modify the semantics such that None is returned if the stack gets longer than a
fixed size maxsize.

Define a function that, for a given expression, returns a suitable stack size, and show
that the stack does not overflow.

context
fixes maxsize :: nat

begin

The context construct allows you to locally fix some value. Once you close the context,
this value becomes a parameter of everything defined inside the context.

Work with the following operation, which ensures that the stack does not overflow:

definition push :: “val ⇒ stack ⇒ stack option” where
“push i stk ≡ if length stk < maxsize then Some (i#stk) else None”

fun exec ′1 :: “instr ⇒ state ⇒ stack ⇒ stack option”

fun exec ′ :: “instr list ⇒ state ⇒ stack ⇒ stack option”

end — End of context

Function to return the minimum required stack size for a given expression

fun stacksize :: “aexp ⇒ nat”

Prove the correctness lemma: Hint: For the induction to go through, you need to gener-
alize the lemma over the stack!

theorem exec comp ′: “stacksize a ≤ maxsize
=⇒ exec ′ maxsize (comp a) s [] = Some ([aval a s])”

Homework 3.1 Compilation to Register Machine

Submission until Tuesday, November 3, 10:00am.

In this exercise, you will define a compilation function from expressions to register ma-
chines and prove that the compilation is correct. Recall the arithmetic expressions with
side effects from Tutorial 2:

type synonym vname = string
type synonym val = int
type synonym state = “vname ⇒ val”

datatype aexp = N int | V vname | Plus aexp aexp | Incr vname

fun aval :: “aexp ⇒ state ⇒ val × state” where

2



“aval (N n) s = (n,s)”
| “aval (V x ) s = (s x ,s)”
| “aval (Plus a1 a2) s = (let

(v1,s) = aval a1 s;
(v2,s) = aval a2 s

in (v1+v2,s))”
| “aval (Incr x ) s = (s x , s(x :=s x + 1 ))”

The registers in our simple register machines are natural numbers:

type synonym reg = nat

The instructions are:

datatype instr =
LDI int reg — Load an integer constant in a register (Load Immediate).
| LD vname reg — Load a variable value in a register.
| ST reg vname — Store a register’s content to a variable.
| ADD reg reg — Add the contents of two registers, replacing the first one with the result.

Recall that a variable state is a function from variable names to integers. Our machine
state contains both, variables and registers. For technical reasons, we encode it into a
single function:

datatype v or reg = Var vname | Reg reg
type synonym mstate = “v or reg ⇒ int”

Note: To access a variable value, we can write σ (Var x ), to access a register, we can
write σ (Reg x ).

To extract the variable state from a machine state σ, we can use σ ◦ Var, where op ◦ is
function composition.

Complete the following definition of the function for executing an instruction on a ma-
chine state σ. You need to add the cases of the instruction being “load immediate”,
“load”, and “store”.

fun exec :: “instr ⇒ mstate ⇒ mstate” where
— Add your cases here
“exec (ADD r1 r2 ) σ = σ (Reg r1 := σ (Reg r1 ) + σ (Reg r2 ))”

Next define the function executing a sequence of register-machine instructions, one at a
time. We have already defined for you the case of empty list of instructions. You need
to add the recursive case.

fun execs :: “instr list ⇒ mstate ⇒ mstate” where
“execs [] σ = σ” |
— Add recursive case here

We are finally ready for the compilation function. Your task is to define a function cmp
that takes an arithmetic expression a and a register r and produces a list of register-
machine instructions whose execution in any machine state should lead to a machine
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state having in r the value of evaluating a, and the variable state modified according to
the side-effects in a.

Here is the intended behavior of cmp:

• cmp (N n) r loads immediate n into r

• cmp (V x ) r loads x into r

• cmp (Plus a a1 ) r first compiles a placing the result in r, then compiles a1 placing
the result in r + 1, and finally adds the content of r + 1 to that of r (storing the
result in r).

• cmp (Incr x ) r load x into r, increment r, store r to x, decrement r. Note: Figure
out how to encode increment and decrement with the available instructions. If you
need a free register, use r+1.

fun cmp :: “aexp ⇒ reg ⇒ instr list”

Finally, you need to prove the following correctness lemma, which states that our register-
machine compiler is correct, in that executing the compiled instructions of an arithmetic
expression yields (in the indicated register) the same result as evaluating the expression,
and the variables are modified correctly.

Hint: For proving correctness, you will need auxiliary lemmas stating that exec commutes
with list concatenation and that the instructions produced by cmp a r do not alter
registers below r. Moreover, the following lemma, which states that updating a register
does not affect the variables, may be useful:

lemma [simp]: “s (Reg r := x ) o Var = s o Var” by auto

lemma cmpCorrect : “
execs (cmp a r) σ (Reg r) = fst (aval a (σ o Var))
∧ execs (cmp a r) σ o Var = snd (aval a (σ o Var))”
— The first conjunct states that the register contains the correct value, the second conjunct
states that the variable state is correct. Note that fst and snd select the first and second element
of a pair.
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