
Technische Universität München WS 2015/16
Institut für Informatik 3. 11. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: ′s ⇒ ′s ⇒ bool. Intuitively, R
s t represents a single step from state s to state t.

The reflexive, transitive closure R∗ of R is the relation that contains a step R∗ s t, iff R
can step from s to t in any number of steps (including zero steps).

Formalize the reflexive transitive closure as inductive predicate:

inductive star :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool”

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:

lemma star prepend : “ [[r x y ; star r y z]] =⇒ star r x z”
lemma star append : “ [[star r x y ; r y z]] =⇒ star r x z”

Now, formalize the star predicate again, this time the other way round:

inductive star ′ :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool”

Prove the equivalence of your two formalizations

lemma “star r x y = star ′ r x y”

Hint: The induction method expects the assumption about the inductive predicate to be
first.

Exercise 4.2 Odd

The odd natural numbers can be specified by an inductive predicate:

inductive odd :: “nat ⇒ bool” where
odd1 : “odd 1”
| oddSS : “odd n =⇒ odd (n+2)”

Prove, using Isar:

lemma
assumes “odd (n+2)”
shows “odd n”

1

Exercise 4.3 Binary Trees with the Same Shape

Consider this datatype of binary trees:

datatype tree = Leaf int | Node tree tree

Define an inductive binary predicate sameshape :: tree ⇒ tree ⇒ bool, where sameshape
t1 t2 means that t1 and t2 have exactly the same overall size and shape. (The elements
in the corresponding leaves may be different.)

inductive sameshape :: “tree ⇒ tree ⇒ bool” where

Now prove that the sameshape relation is transitive. Use the inductive cases command
to get customized elimination rules, and try to make an automatic proof. (Try to prove
the lemma with induction and auto first, to figure out which cases you need.)

theorem “ [[sameshape t1 t2; sameshape t2 t3]] =⇒ sameshape t1 t3”

Homework 4.1 Counting Elements

Submission until Tuesday, November 10, 10:00am.

Give all your proofs in Isar, not apply style

Recall the count function, that counts how often a specified element occurs in a list:

fun count :: “ ′a ⇒ ′a list ⇒ nat” where
“count x [] = 0”
| “count x (y#ys) = (if x=y then Suc (count x ys) else count x ys)”

Show that, if an element occurs in the list (its count is positive), the list can be split
into a prefix not containing the element, the element itself, and a suffix containing the
element one times less

lemma “count x xs = Suc n =⇒ ∃ p s. xs = p@x#s ∧ count x p = 0 ∧ count x s = n”

Homework 4.2 Counting Elements II

Submission until Tuesday, November 10, 10:00am.

Use Isar where appropriate

Use an inductive definition to specify the words accepted by the following context free
grammar: S → aSbS | bSaS | ε
datatype character = a | b

inductive S :: “character list ⇒ bool”

2

Show that every word accepted by the grammar has the same number of as and bs.

lemma S same number :
assumes “S xs”
shows “count a xs = count b xs”

The crucial lemma for the other direction, i.e., that every word with the same number of
as and bs is accepted by the grammar, states that, in a sequence of numbers, such that
the next number is one less or one more than the previous number, the first number is
0, and the last number is 1, we must find a 0 to 1 transition.

We first fix the situation described above in a context:

context
fixes d :: “nat ⇒ int” — The sequence as a function
fixes n :: nat — The maximum index into the sequence (length - 1)
assumes DIFF : “ ∀ i<n. abs (d i − d (i + 1)) = 1” — The difference between adjacent

elements is −1 or 1
assumes START : “d 0 = 0” — The first element is 0
assumes END : “d n = 1” — The last element is 1

begin

Your task is to prove the following theorem. You will need to generalize the theorem
to allow arbitrary indexes with values ≤ 0 as starting point. Then, you may use the
induction rule inc induct.

Hint: If you have problems finding a proof, sketch the proof on paper first, and then try
to translate your proof sketch to Isar!

theorem find step: “ ∃ i<n. d i = 0 ∧ d (i+1) = 1”

end

For 5 bonus points, finish the proof of the other direction, i.e., prove:

theorem “S l ←→ count a l = count b l”

Warning: This proof is hard. Do not attempt it unless you finished the rest of this
homework. To succeed with this proof, you are strongly advised to sketch it on paper
first, and then translate it to Isar.

3

