
Technische Universität München WS 2015/16
Institut für Informatik 10. 11. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Hint: Use the following definition for Or :

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1 ) (Not b2 ))”

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

2. Adapt the big step semantics to include rules for the new commands.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Prove: (IF b THEN c1 ELSE c2 ) ∼ ((ASSUME b; c1 ) OR (ASSUME (Not b);
c2 ))

Note: It is easiest if you take the existing theories and modify them.

Homework 5.1 Break

Submission until Tuesday, November 17, 10:00am.

Note: This homework comes with a template file. You are strongly encouraged to use it!

1



Your task is to add a break command to the IMP language. The break command should
immediately exit the innermost while loop.

The new command datatype is:

datatype
com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61 ] 61 )
| Seq com com (“ ;;/ ” [60 , 61 ] 60 )
| If bexp com com (“ (IF / THEN / ELSE )” [0 , 0 , 61 ] 61 )
| While bexp com (“ (WHILE / DO )” [0 , 61 ] 61 )
| BREAK

The idea of the big-step semantics is to return not only a state, but also a break flag,
which indicates a pending break. Modify/augment the big-step rules accordingly:

inductive
big step :: “com × state ⇒ bool × state ⇒ bool” (infix “⇒” 55 )

Now, write a function that checks that breaks only occur in while-loops

fun break ok :: “com ⇒ bool”

Show that the pending break-flag is not set after executing a well-formed command

lemma
assumes “break ok c”
assumes “ (c,s) ⇒ (brk ,t)”
shows “¬brk”

Homework 5.2 Variables not occurring in command

Submission until Tuesday, November 17, 10:00am.

Write a function which checks whether a variable occurs in a command. (Hint: You need
to write such functions also for Boolean and arithmetic expressions)

fun occ :: “vname ⇒ com ⇒ bool” where

Show the following two lemmas, which state that a program does not modify, nor depends
on variables that do not occur in it.

Hint: For induction, use the customized big step induct rule!

lemma no touch:
assumes “¬occ x c”
assumes “ (c,s) ⇒ (brk ,t)”
shows “t x = s x”

lemma no dep:
assumes “¬occ x c”
assumes “ (c,s) ⇒ (brk ,t)”
shows “ (c,s(x :=v)) ⇒ (brk ,t(x :=v))”

2



Homework 5.3 Eliminating Breaks

Submission until Tuesday, November 17, 10:00am.

In this homework, you shall prove correct an elimination procedure for breaks, which we
have already specified for you.

The procedure works by using an auxiliary variable. We will assume that it does not
occur in the original program.

definition “breakvar ≡ ′′ break ′′”

fun ebrk :: “com ⇒ com” — Rules given in homework template!

The following lemma states one direction of the correctness of our construction: If we
execute the original program, the modified program has the same execution, and, if and
only if the original program has a pending break, breakvar is set. (Note that, as breakvar
is initially zero and does not occur in c, it is also zero in t (cf lemma no touch)!)

We give you a proof template here, you have to prove the interesting cases for loops, the
other cases go through automatically!

lemma
assumes “¬occ breakvar c”
assumes “s breakvar = 0”
assumes “ (c,s) ⇒ (brk ,t)”
shows “case brk of
False ⇒ (ebrk c, s) ⇒ (False,t)
| True ⇒ (ebrk c, s) ⇒ (False,t(breakvar := 1 )) ”
using assms(3 ,1 ,2 )

proof (induction rule: big step induct)
case (WhileFalse b s c)
next
case (WhileTrue b s1 c s2 brk t)
next
case (WhileBreak b s1 c s2 )
qed (auto split : bool .splits elim!: Seq1 simp: assign simp)

3


