
Technische Universität München WS 2015/16
Institut für Informatik 17. 11. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack,
similar to arithmetic expressions:

• The boolean value False is represented by the number 0, the boolean value True
is represented by any number not equal to 0.

• For every boolean operation exists a corresponding instruction which, similar to
arithmetic instructions, operates on values on top of the stack.

• The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to False, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

Exercise 6.2 While Free Programs

a) Show that while-free programs always terminate, i.e., show that for any while-free
command and any state, the big-step semantics yields a result state.

b) Show that non-terminating programs contain a while loop, i.e., show that all com-
mands, for which there is a state such that the big-step semantics yields no result, contain
a while loop.

1



Homework 6.1 Functional Small-Step

Submission until Tuesday, Nov 24, 10:00am.

Specify a functional version of the small-step semantics, and show that it matches the
relational version:

fun fstep :: “com ∗ state ⇒ (com ∗ state) option”
theorem “ (c,s) → (c ′,s ′) ←→ fstep (c,s) = Some (c ′,s ′)”

Note: A return value of None means that there is no step.

Homework 6.2 Left and Right Movers

Submission until Tuesday, Nov 24, 10:00am.

A semaphore is a counter which can be incremented and decremented by parallel pro-
cesses, however, decrement has to wait until the counter is greater 0. This ensures that
the counter is never negative.

Semaphores can be used to synchronize the access of processes to resources.

We model the possible operations on semaphores as follows:

datatype action =
Up vname — Increment
| Down vname — Decrement
| Other — Unrelated operation

Define the effect of an action on a state. Here, the state holds the values of the
semaphores. Assume that other actions do not modify the state.

inductive exec :: “action ⇒ state ⇒ state ⇒ bool”

Next, we want to develop a scheduler for two processes. The actions of the processes are
modeled as lists.

We use a small-step approach, i.e., we define a configuration that contains the remaining
actions of the two processes and the current semaphore state:

type synonym config = “action list × action list × state”

Then, you have to define a relation step such that step c l c ′ means that in c one action
is scheduled, and the resulting configuration is c′. The label l indicates the process (1
or 2) and the executed action:

datatype label = P1 action | P2 action

inductive step :: “config ⇒ label ⇒ config ⇒ bool”

A well-known result on semaphores is that down-operations are right-movers and up-
operations are left movers.

2



Show that down-operations are right-movers, i.e. a down operation on one process can
be exchanged with a subsequent operation on the other process. Intuitively, this moves
the down-operation to the right in the interleaving sequence.

lemma
assumes “step c1 (P1 (Down x )) c2”
assumes “step c2 (P2 a) c3”
shows “ ∃ ch. step c1 (P2 a) ch ∧ step ch (P1 (Down x )) c3”

Note: The case where process 2 contains the down-operation is symmetric, and you are
not required to prove it.

Show that Up-operations are left-movers, i.e. an up operation on one process can be
exchanged with an operation on the other process that comes before it. Intuitively, this
moves the up-operation to the left in the interleaving sequence.

lemma
assumes “step c1 (P1 a) c2”
assumes “step c2 (P2 (Up x )) c3”
shows “ ∃ ch. step c1 (P2 (Up x )) ch ∧ step ch (P1 a) c3”

Hint: With a careful setup, and using inductive simps (look it up in the docs) to generate
auxiliary lemmas, there is a one-line proof of these properties. However, an Isar-proof
is more structured and may be simpler to develop, so do not invest too much time in
finding a short proof.

Homework 6.3 Locking Order

Submission until Tuesday, Nov 24, 10:00am. 5 bonus points, hard!

Another well-known result is that a locking-order implies deadlock freedom: Assume
that there is an ordering on locks, such that a process may only acquire locks which
are greater than all locks it has already acquired. Moreover, assume that a process
eventually releases all acquired locks. Then, there are no deadlocks.

Note that locks can be simulated by semaphores initialized to 1.

We define well-formed action sequences as follows:

fun well formed aux :: “vname set ⇒ action list ⇒ bool” where
“well formed aux A (Down x#l) ←→ well formed aux (insert x A) l ∧ (∀ y∈A. x>y)”

| “well formed aux A (Up x#l) ←→ well formed aux (A−{x}) l ∧ x∈A”
| “well formed aux A (Other#l) ←→ well formed aux A l”
| “well formed aux A [] ←→ A={}”

abbreviation “well formed l ≡ well formed aux {} l”

Note that the additional parameter A captures the locks that the process has already ac-
quired. For simplicity, we use the lexicographic ordering on semaphore names as lock or-
dering. You have to import ∼∼/src/HOL/Library/List lexord and ∼∼/src/HOL/Library/Char ord
to get this!

3



Moreover, we define the initial state, a final state, a deadlocked state, and a step without
an explicit label:

abbreviation init :: state where “init ≡ λ . 1” — Initial state
fun final where “final ([],[], ) ←→ True” | “final ←→ False”
definition “deadlocked c ≡ ¬final c ∧ (∀ c ′ a. ¬step c a c ′)”
abbreviation “step ′ c c ′ ≡ ∃ a. step c a c ′”

Your task is to prove that schedules of well-formed action sequences cannot deadlock:

theorem
assumes WF : “well formed l1” “well formed l2”
assumes STEPS : “star step ′ (l1 ,l2 ,init) c ′”
shows “¬deadlocked c ′”

Here are some hints on one possible way of proving this: Try to find a suitable invariant
on configurations, i.e., a predicate that holds for the initial configuration, and is preserved
by a step. Having established such a predicate, you can easily prove that it holds for
any reachable configuration:

lemma
assumes reachable: “star R c0 c ′”
assumes initial : “I c0”
assumes preserve: “

∧
c c ′. I c =⇒ R c c ′ =⇒ I c ′”

shows “I c ′”

The invariant should contain enough information about the configuration and the ac-
quired locks to get through the following (informal) argument:

If a state is stuck, there are two cases: 1) Both processes want to acquire locks (wlog
a and b) which are not free. Due to locking order, the locks are held by the respective
other process. Again, due to locking order, this implies a > b and a < b, which is a
contradiction.

2) Another possibility for stuck states is that one process is already finished. However,
well-formedness ensures that a finished process has released all its locks.

4


