
Technische Universität München WS 2015/16
Institut für Informatik 1. 12. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Security type system: bottom-up with subsumption

Use the template file ex08 tmpl.thy.

Recall security type systems for information flow control from the lecture. Such a type
systems can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

1. Define a bottom-up security type system for information flow control with sub-
sumption rule.

2. Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

Exercise 8.2 Definite Initialization Analysis

Use the template file ex08 tmpl.thy.

In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. Furthermore, the ternary predicate D from the lecture can be split into two
parts: a function AA :: com ⇒ name set (“assigned after”) which collects the names of
all variables assigned by a command and a binary predicate D :: name set ⇒ com ⇒ bool
which checks that a command accesses only previously assigned variables. Conceptually,
the ternary predicate from the lecture (call it D lec) and the two-step approach should
relate by the equivalence D V c ←→ D lec V c (V ∪ AA c)

1. Study the already defined small-step semantics for definite analysis.

2. Define the function AA which computes the set of variables assigned after execution
of a command. Furthermore, define the predicate D which checks if a command
accesses only assigned variables, assuming the variables in the argument set are
already assigned.

3. Prove progress and preservation of D with respect to the small-step semantics,
and conclude soundness of D. You may use (and then need to prove) the lemmas
D incr and D mono.

1



Homework 8 Definite Initialization II

Submission until Tuesday, Dec 8, 10:00am.

A well-initialized command only depends on the variables that are already initialized.
That is, executability and the values of the definitely initialized variables after executing
the command only depend on the values of the already initialized variables before the
command.

Prove the following lemma, which formalizes the proposition above wrt. the standard big-
step semantics. Import ∼∼/src/HOL/IMP/Def Init and ∼∼/src/HOL/IMP/Big Step
for this homework.

lemma
assumes “D A c B”
assumes “s1 = s2 on A”
assumes “ (c,s1 ) ⇒ s1 ′”
shows “ ∃ s2 ′. (c,s2 ) ⇒ s2 ′ ∧ s1 ′=s2 ′ on B”

2


