Semantics of Programming Languages Exercise Sheet 12

Exercise 12.1 Kleene fixed point theorem

Prove the Kleene fixed point theorem. We first introduce some auxiliary definitions:

A chain is a set such that any two elements are comparable. For the purposes of the Kleene fixed-point theorem, it is sufficient to consider only countable chains. It is easiest to formalize these as ascending sequences. (We can obtain the corresponding set using the function range :: $('a \Rightarrow 'b) \Rightarrow 'b \ set$.)

definition chain :: " $(nat \Rightarrow 'a::complete_lattice) \Rightarrow bool"$ where "chain $C \longleftrightarrow (\forall n. \ C \ n \le C \ (Suc \ n))$ "

A function is continuous, if it commutes with least upper bounds of chains.

definition continuous :: "('a::complete_lattice \Rightarrow 'b::complete_lattice) \Rightarrow bool" where "continuous $f \leftrightarrow (\forall C. \ chain \ C \rightarrow f \ (Sup \ (range \ C))) = Sup \ (f \ range \ C))$ "

The following lemma may be handy:

lemma continuousD: "[[continuous f; chain C]] \implies f (Sup (range C)) = Sup (f ' range C)" unfolding continuous_def by auto

As warm-up, show that any continuous function is monotonic:

```
lemma cont_imp_mono:

fixes f :: "'a::complete_lattice \Rightarrow 'b::complete_lattice"

assumes "continuous f"

shows "mono f"
```

Hint: The relevant lemmas are

 $\mathbf{thm} \ mono_def \ monoI \ monoD$

Finally show the Kleene fixed point theorem. Note that this theorem is important, as it provides a way to compute least fixed points by iteration.

```
theorem kleene_lfp:

fixes f:: "'a::complete_lattice \Rightarrow 'a"

assumes CONT: "continuous f"

shows "lfp f = Sup (range (\lambda i. (f^i) bot))"

proof -
```

We propose a proof structure here, however, you may deviate from this and use your own proof structure:

```
let ?C = "\lambda i. (f \hat{i}) bot"

note MONO = cont\_imp\_mono[OF \ CONT]

have CHAIN: "chain ?C"

show ?thesis

proof (rule antisym)

show "Sup (range ?C) \leq lfp f"

next

show "lfp f \leq Sup \ (range \ ?C)"

qed

qed
```

Hint: Some relevant lemmas are

thm lfp_unfold lfp_lowerbound Sup_subset_mono range_eqI

Exercise 12.2 Complete Lattice over Lists

Show that lists of the same length ordered pointwise form a partial order if the element type is partially ordered. Partial orders are predefined as the type class "order".

instantiation *list* :: (*order*) *order*

Define the infimum operation for a set of lists. The first parameter is the length of the result list.

definition Inf_list :: "nat \Rightarrow ('a::complete_lattice) list set \Rightarrow 'a list"

Show that your ordering and the infimum operation indeed form a complete lattice:

interpretation $Complete_Lattice "{xs. length <math>xs = n}" "Inf_list n" for n$

Homework 12 Euclid's Algorithm

Submission until Tuesday, January 19, 2011, 10:00am.

Euclid's algorithm computes the greatest common divisor of two **positive** numbers. Its pseudocode looks as follows:

while $a \neq b$ do if a < b then b := b - aelse a := a - b

- 1. Write a program $SUB \ a \ b$ which computes the difference between variables a and b, without modifying them. The result should be stored in variable "r". You may assume that $a \neq "r" \land b \neq "r"$.
- 2. Write a program *EUCLID*, which implements Euclid's algorithm, and prove its **total** correctness.

Hints:

- In *Complex_Main*, there is a *gcd* function. It works for both, natural numbers and integers.
- You may either try to prove a rule for *SUB* (similar to the assignment rule), or unfold the definition of *SUB* during the proof of *EUCLID*.