
Technische Universität München WS 2018/19
Fakultät für Informatik 23.10.2018

Dr. Peter Lammich
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be imported as follows:

theory ex02 imports “HOL−IMP .AExp” “HOL−IMP .BExp” begin

Exercise 2.1 Induction

Recall the definition of itrev from the lecture:

fun itrev :: “ ′a list ⇒ ′a list ⇒ ′a list” where
“itrev [] ys = ys”
| “itrev (x # xs) ys = itrev xs (x # ys)”

We already proved the following lemma connecting itrev and rev :

lemma itrev rev :
“itrev xs ys = rev xs @ ys”

In the last homework, you already defined fold right on lists. Here is a left version of it:

fun fold left :: “ (′a ⇒ ′b ⇒ ′b) ⇒ ′a list ⇒ ′b ⇒ ′b” where
“fold left [] a = a”
| “fold left f (x # xs) a = fold left f xs (f x a)”

We want to prove that rev can also be expressed in terms of fold left :

lemma fold left rev :
“fold left (#) xs [] = rev xs”

Find and prove an appropriate theorem that connects itrev and fold left, and then use
it to prove fold left rev.

Define a function deduplicate that removes duplicate occurrences of subsequent elements.

fun deduplicate :: “ ′a list ⇒ ′a list” where

The following should evaluate to True, for instance:

value “deduplicate [1 ,1 ,2 ,3 ,2 ,2 ,1 ::nat] = [1 ,2 ,3 ,2 ,1]”

Prove that a deduplicated list has at most the length of the original list:

lemma
“length (deduplicate xs) ≤ length xs”

1

Exercise 2.2 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic
substitution, i.e., subst x a ′ a shall be the expression a where every occurrence of variable
x has been replaced by expression a ′.

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (subst x a ′ a) s = aval a (s(x :=aval a ′ s))”

Note: The expression s(x :=v) updates a function at point x. It is defined as:

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.3 Arithmetic Expressions With Side-Effects

We want to extend arithmetic expressions by the postfix increment operation x++, as
known from Java or C++.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
val×state, i.e., it takes an expression and a state, and returns a value and a new state.
Define the function aval ′.

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “<>(x :=0)”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”

2

value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc:
“aval ′ a <> = (v , s ′) =⇒ 0 ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split : if splits prod .splits).

Exercise 2.4 Variables of Expression (Time Permitting)

Define a function that returns the set of variables occurring in an arithmetic expression.

fun vars :: “aexp ⇒ vname set” where

Show that arithmetic expressions do not depend on variables that they don’t contain.

lemma ndep: “x /∈ vars e =⇒ aval e (s(x :=v)) = aval e s”

Homework 2.1 Delta Encoding

Submission until Tuesday, October 30, 10:00am.

We want to encode a list of integers as follows: The first element is unchanged, and every
next element only indicates the difference to its predecessor.

For example: (Hint: Use this as test cases for your spec!)

• enc [1 ,2 ,4 ,8] = [1 ,1 ,2 ,4]

• enc [3 ,4 ,5] = [3 ,1 ,1]

• enc [5] = [5]

• enc [] = []

Background: This algorithm may be used in lossless data compression, when the differ-
ence between two adjacent values is expected to be small, as e.g. in audio data, image
data, or sensor data.

It typically requires much less space to store the small deltas than the absolute values.

Disadvantage: If the stream gets corrupted, recovery is only possible when the next
absolute value is transmitted. For this reason, in practice, one will submit the current
absolute value from time to time. (This is not modeled in this exercise!)

3

Specify a function to encode a list with delta-encoding. The first argument is used to
represent the previous value, and can be initialized to 0.

fun denc :: “int ⇒ int list ⇒ int list” where

Specify the decoder. Again, the first argument represents the previous decoded value,
and can be initialized to 0.

fun ddec :: “int ⇒ int list ⇒ int list” where

Show that encoding and then decoding yields the same list. Hint: The lemma will need
generalization.

lemma “ddec 0 (denc 0 l) = l”

Homework 2.2 Boolean Expressions With Equality

Submission until Tuesday, October 30, 10:00am.

Our current version of Boolean expressions is missing an equality operator on arith-
metic expressions. In this exercise your task is to define a function beq that, given two
arithmetic expressions a1 and a2, constructs a Boolean expression beq a1 a2 such that:

lemma
“bval (beq a1 a2) s ←→ aval a1 s = aval a2 s”

Prove this property!

Homework 2.3 Models for Boolean Formulas

Submission until Tuesday, October 30, 10:00am.

Consider the following datatype modeling Boolean formulas:

datatype ′a bexp ′ = V ′a | And “ ′a bexp ′” “ ′a bexp ′” | Not “ ′a bexp ′” | TT | FF

Define a function sat that decides whether a given assignment satisfies a formula:

fun sat :: “ ′a bexp ′⇒ (′a ⇒ bool) ⇒ bool”

Define a function models that computes the set of satisfying assignments for a given
Boolean formula:

fun models :: “ ′a bexp ′⇒ (′a ⇒ bool) set”
where

“models (V x) = {σ. σ x}”
| “models TT = UNIV”
| “models FF = {}”

Here UNIV = {x . True}. Fill in the remaining cases! Hint: You can use the set operators
−, ∩, ∪ for complement/difference, intersection, and union of sets.

4

Finally prove that a formula is a satisfying assignment for a formula ϕ iff it is contained
in models ϕ:

lemma
“sat ϕ σ ←→ σ ∈ models ϕ”

Homework 2.4 Simplifying Boolean Formulas (Bonus)

Submission until Tuesday, October 30, 10:00am.

Note: This is a bonus exercise worth three additional points. In the end, the total
number of achievable points will be the sum of all the points you can get for all regular
exercises. When we calculate the percentage of the total points you reached, we will just
add the bonus points on top of the points you got in the regular exercises.

In this exercise, we want to simplify the Boolean formulas defined in the previous exercise
by removing the constants FF and TT from them where possible. We will say that a
formula is simplified if does not contain a constant or if it is FF or TT itself.

fun has const where
“has const TT = True”
| “has const FF = True”
| “has const (Not a) = has const a”
| “has const (And a b) ←→ has const a ∨ has const b”
| “has const = False”

definition “simplified ϕ ←→ ϕ = TT ∨ ϕ = FF ∨ ¬ has const ϕ”

Define a function simplify that simplifies Boolean formulas and prove that it produces
only simplified formulas:

lemma “simplified (simplify ϕ)”

Even more importantly, you need to prove that simplify does not alter the semantics of
the formula:

lemma “models (simplify ϕ) = models ϕ”

5

