Technische Universitat Miinchen WS 2020/21
Fakultat fir Informatik 2.11.2020
Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages

Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and add
the the following three lines at the beginning of this file.

theory FEz01
imports Main

begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:
“2 + (2:nat)” “(2:nat) x (5 + 3)” “(Bumat) x 4 — 2% (7+ 1)

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “’a list = 'a = nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas if necessary) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x < length xs”

Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “'a list = 'a = 'a list”
Convince yourself on some test cases that your definition of snoc behaves as expected,

for example run:

”

value “snoc [| ¢

Also prove that your test cases are indeed correct, for instance show:
lemma “snoc [| ¢ = [¢]”
Next define a function reverse that reverses the order of elements in a list. (Do not use

the existing function rev from the library.) Hint: Define the reverse of # xs using the
snoc function.

fun reverse :: “'a list = 'a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:
value “reverse [a, b, c]”

lemma “reverse [a, b,] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.

»”

theorem “reverse (reverse xs) = wxs

Homework 1.1 More Finger Exercise with Lists

Submission until Sunday, November 8, 23:59.

Submission Instructions

Submissions are handled via https://competition.isabelle.systems/ .

e Register an account in the system and send the tutor an e-mail with your username.

e Select the competition “Semantics 2020/21” and submit your solution following
the instructions on the website.

e The system will check that your solution can be loaded in Isabelle2020 without
any errors and reports how many of the main theorems you were able to prove.

e You can upload multiple times; the last upload before the deadline is the one that
will be graded.

https://competition.isabelle.systems/

e If you have any problems uploading, or if the submission seems to be rejected for
reasons you cannot understand, please contact the tutor.

e Definitions from the tutorial (such as the snoc function) are made available in the
submission file.

General hints:

e If you cannot prove a lemma, that you need for a subsequent proof, assume this
lemma by using sorry.

e Define the functions as simply as possible. In particular, do not try to make them
tail recursive by introducing extra accumulator parameters — this will complicate
the proofs!

e All proofs should be straightforward, and take only a few lines.

Define a function repeat that repeats a value n times in a list.

fun repeat :: “nat = 'a = 'a list”

The following evaluate to true, for instance:

value “repeat 5 (0:nat) = [0, 0, 0, 0, 0]”
value “repeat 3 (1:nat) =[1, 1, 1]”

Prove that the size of the resulting list is n:

theorem rep_len: “length (repeat n a) = n”

Finally, prove the following lemma connecting reverse and repeat:

theorem rep_rev: “reverse (repeat n a) = repeat n a”

Hint: You may need a lemma about snoc and repeat.

