
Technische Universität München WS 2020/21
Fakultät für Informatik 16.11.2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: ′s ⇒ ′s ⇒ bool.

Intuitively, R s t represents a single step from state s to state t.

The reflexive, transitive closure R∗ of R is the relation that contains a step R∗ s t, iff R
can step from s to t in any number of steps (including zero steps).

Formalize the reflexive transitive closure as an inductive predicate:

inductive star :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:

lemma star prepend : “ [[r x y ; star r y z]] =⇒ star r x z”
lemma star append : “ [[star r x y ; r y z]] =⇒ star r x z”

Now, formalize the star predicate again, this time the other way round (append if you
prepended the step before or vice versa):

inductive star ′ :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r

Prove the equivalence of your two formalizations:

lemma “star r x y = star ′ r x y”

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values—e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.

1

fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec comp to show that programs output by the com-
piler never underflow the stack:

theorem exec comp: “exec (comp a) s stk = Some (aval a s # stk)”

Exercise 3.3 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisym-
metric and T is a subset of A. Show with a structured, Isar-style proof that then A is
also a subset of T (without proof methods more powerful than simp!):

lemma
assumes total : “ ∀ x y . T x y ∨ T y x”
and anti : “ ∀ x y . A x y ∧ A y x −→ x = y”
and subset : “ ∀ x y . T x y −→ A x y”

shows “A x y −→ T x y”

Homework 3.1 Avoiding Stack Underflow (II)

Submission until Sunday, Nov 22, 23:59.

In the tutorial, we have defined a modified version of the exec function that returns
None if the stack is not large enough. However, this function actually executes the
instructions. Sometimes, we cannot pay this cost: Here, we want to detect this situation
statically. Define a function can execute that, given an initial stack size and a list of
instructions, returns a bool indicating whether a stack underflow will occur.

fun can execute :: “nat ⇒ instr list ⇒ bool”

Prove that the function correctly analyzes stack underflow behaviour.

theorem can exec correct :
“can execute (length stk) ins =⇒ exec ins s stk 6= None”

theorem can exec complete:
“exec ins s stk = Some res =⇒ can execute (length stk) ins”

Homework 3.2 Avoiding Stack Underflow (III)

Submission until Sunday, Nov 22, 23:59.

Define a relational version of exec1 and exec. Leave the cases in which the stack would
underflow undefined.

2

inductive exec1r :: “instr ⇒ state ⇒ stack ⇒ stack ⇒ bool”
inductive execr :: “instr list ⇒ state ⇒ stack ⇒ stack ⇒ bool”

Prove equivalence.

theorem step equiv : “exec1r i s stk stk ′←→ exec1 i s stk = Some stk ′”
theorem exec equiv : “execr ins s stk stk ′←→ (exec ins s stk = Some stk ′)”

Homework 3.3 Negation Normal Form

Submission until Sunday, Nov 22, 23:59.

In this assignment, you shall write a function that converts a boolean expression over
variables, conjunction, disjunction, and negation to negation normal form (NNF), and
prove its correctness.

We start by defining our version of boolean expressions:

datatype bexp = Var vname | Not bexp | And bexp bexp | Or bexp bexp

type synonym state = “vname ⇒ bool”

fun is var :: “bexp ⇒ bool” where
“is var (Var) = True”
| “is var = False”

fun bval :: “bexp ⇒ state ⇒ bool”

Next, we define a predicate that checks whether a boolean expression is in NNF. In NNF,
only variables may be negated.

inductive is nnf :: “bexp ⇒ bool”

Now we want to show that the above definition is equivalent to a non-inductive definition
of NNF. We define a sub function first that extracts all sub-expressions from a bexp.

fun sub :: “bexp ⇒ bexp set”
value “sub (And (Not (Var ′′x ′′)) (Var ′′y ′′)) =
{
Var ′′x ′′,
Var ′′y ′′,
Not (Var (′′x ′′)),
And (Not (Var ′′x ′′)) (Var ′′y ′′)
}”

theorem nnf not : “is nnf b = (∀ b ′. Not b ′ ∈ sub b −→ is var b ′)”

Now define a function nnf which converts any boolean expression to NNF. This can be
achieved by “pushing in” negations and eliminating double negations.

fun nnf :: “bexp ⇒ bexp”

3

Prove that your function is correct.

theorem nnf sound : “is nnf (nnf b)”
theorem nnf compl : “bval (nnf b) s = bval b s”

4

