
Technische Universität München WS 2020/21
Fakultät für Informatik 30.11.2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Let Or be the disjunction of two bexps:

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1 ) (Not b2 ))”

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Exercise 5.2 Deskip

Define a recursive function

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma
assumes “ (WHILE b DO c, s) ⇒ t” and “ ∀ s t . (c, s) ⇒ t −→ (c ′, s) ⇒ t”

shows “ (WHILE b DO c ′, s) ⇒ t”
lemma “deskip c ∼ c”

1



Exercise 5.3 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

2. Adapt the big step semantics to include rules for the new commands.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Prove: (IF b THEN c1 ELSE c2 ) ∼ ((ASSUME b; c1 ) OR (ASSUME (Not b);
c2 ))

Note: It is easiest if you take the existing theories and modify them. If you work in this
template, remove the old big step notations first:

no notation Assign (“ ::= ” [1000 , 61 ] 61 )
no notation Seq (“ ;;/ ” [60 , 61 ] 60 )
no notation If (“ (IF / THEN / ELSE )” [0 , 0 , 61 ] 61 )
no notation While (“ (WHILE / DO )” [0 , 61 ] 61 )
no notation big step (infix “⇒” 55 )
no notation equiv c (infix “∼” 50 )

Homework 5.1 Break

Submission until Sunday, Dec 6, 23:59.

Your task is to add a break command to the IMP language. The break may be used in
a while loop, and it should immediately exit the loop.

The new command datatype is:

datatype
com = Skip (“SKIP”)
| Assign vname aexp (“ ::= ” [1000 , 61 ] 61 )
| Seq com com (“ ;;/ ” [60 , 61 ] 60 )
| If bexp com com (“ (IF / THEN / ELSE )” [0 , 0 , 61 ] 61 )
| While bexp com (“ (WHILE / DO )” [0 , 61 ] 61 )
| Break (“BREAK”)

The idea of the big-step semantics is to return not only a state, but also a break flag,
which indicates a pending break. Modify/augment the big-step rules accordingly:

inductive
big step :: “com × state ⇒ bool × state ⇒ bool” (infix “⇒” 55 )

2



Add proof automation as in HOL−IMP .Big Step:

declare big step.intros [intro]

lemmas big step induct = big step.induct [split format(complete)]

inductive cases SkipE [elim!]: “ (SKIP ,s) ⇒ t”
inductive cases BreakE [elim!]: “ (BREAK ,s) ⇒ t”
inductive cases AssignE [elim!]: “ (x ::= a,s) ⇒ t”
inductive cases SeqE [elim!]: “ (c1 ;;c2 ,s1 ) ⇒ s3”
inductive cases IfE [elim!]: “ (IF b THEN c1 ELSE c2 ,s) ⇒ t”
inductive cases WhileE [elim]: “ (WHILE b DO c,s) ⇒ t”

lemma assign simp:
“ (x ::= a,s) ⇒ (brk ,s ′) ←→ (s ′ = s(x := aval a s) ∧ ¬brk)”
by auto

Now, write a function that checks that breaks only occur in while-loops

fun break ok :: “com ⇒ bool”

Show that the break triggered-flag is not set after executing a well-formed command

theorem ok brk : “ [[(c, s) ⇒ (brk , t); break ok c]] =⇒ ¬brk”

In the presence of BREAK, some additional sources of dead code arise. We want to
eliminate those which can be identified syntactically (that is, without analyzing boolean
expressions).

Write a function elim that eliminates dead code caused by use of BREAK. You only
need to contract commands because of BREAK, you do not need to eliminate SKIPs.

fun elim :: “com ⇒ com”

Now prove correctness for elim:

abbreviation equiv c :: “com ⇒ com ⇒ bool” (infix “∼” 50 ) where
“c ∼ c ′ ≡ (∀ s t . (c, s) ⇒ t = (c ′, s) ⇒ t)”

theorem elim complete: “ (c, s) ⇒ (b, s ′) =⇒ (elim c, s) ⇒ (b, s ′)”
theorem elim sound : “ (elim c, s) ⇒ (b, s ′) =⇒ (c, s) ⇒ (b, s ′)”
lemma “elim c ∼ c”

using elim sound elim complete by fast

Homework 5.2 Fuel your executions

Submission until Sunday, Dec 6, 23:59.

If you try to define a function to execute a program, you will run into trouble with the
termination proof (The program might not terminate).

3



To overcome this, you will define an execution function that tries to execute the program
for a bounded number of steps. It gets an additional nat argument, called fuel, which
decreases for every loop iteration. If the execution runs out of fuel, it stops, returning
None.

We will work on the variant of IMP from the first exercise. Make sure that the big step test
on the submission system works before starting this exercise!

fun exec :: “com ⇒ state ⇒ nat ⇒ (bool × state) option” where
value “ (case (

exec (
WHILE (Bc True) DO
IF (Less (V ′′x ′′) (N 4 ))
THEN ′′x ′′::= (Plus (V ′′x ′′) (N 1 ))
ELSE BREAK

) <> 10
) of (Some (False, s)) ⇒
s ′′x ′′

) = 4”

We want to prove that the execution function is correct wrt. the big-step semantics.

In the following, we give you some guidance for this proof. The two directions are proved
separately. The proof of the first direction is left to you. Recall that is usually best to
prove a statement for a (complex) recursive function using its specific induction rule,
and that auto can automatically split “case”-expressions using the split attribute.

theorem exec imp bigstep: “exec c s f = Some s ′ =⇒ (c, s) ⇒ s ′”

For the other direction, prove a monotonicity lemma first: If the execution terminates
with fuel f, it terminates with the same result using a larger amount of fuel f ′ ≥ f. For
this, first prove the following lemma:

theorem exec add : “exec c s f = Some s ′ =⇒ exec c s (f + k) = Some s ′”

Now the monotonicity lemma that we want follows easily:

lemma exec mono: “exec c s f = Some (brk , s ′) =⇒ f ′ ≥ f =⇒ exec c s f ′ = Some (brk , s ′)”
by (auto simp: exec add dest : le Suc ex )

The main lemma is proved by induction over the big-step semantics. Recall the adapted
induction rule big step induct that nicely handles the pattern big step (c,s) (brk , s ′).

theorem bigstep imp si :
“ (c,s) ⇒ (brk , s ′) =⇒ ∃ k . exec c s k = Some (brk , s ′)”

proof (induct rule: big step induct)

We demonstrate the skip, while-true and if-true case here. The other cases are left to
you!

case (Skip s) have “exec SKIP s 1 = Some (False, s)” by auto
thus ?case by blast

next

4



case (WhileTrue b s1 c s2 brk3 s3 )
then obtain f1 f2 where “exec c s1 f1 = Some (False, s2 )”

and “exec (WHILE b DO c) s2 f2 = Some (brk3 , s3 )” by auto
with exec mono[of c s1 f1 False s2 “max f1 f2”]
exec mono[of “WHILE b DO c” s2 f2 brk3 s3 “max f1 f2”] have
“exec c s1 (max f1 f2 ) = Some (False, s2 )”
and “exec (WHILE b DO c) s2 (max f1 f2 ) = Some (brk3 , s3 )”
by auto

hence “exec (WHILE b DO c) s1 (Suc (max f1 f2 )) = Some (brk3 , s3 )”
using 〈bval b s1 〉 by (auto simp add : add ac)

thus ?case by blast
next

case (IfTrue b s c1 brk ′ t c2 )
then obtain k where “exec c1 s k = Some (brk ′, t)” by blast
hence “exec (IF b THEN c1 ELSE c2 ) s k = Some (brk ′, t)”
using 〈bval b s〉 by (cases k) auto
thus ?case by blast

next

Finally, the main theorem of the homework follows:

lemma “ (∃ k . exec c s k = Some (brk , s ′)) ←→ (c,s) ⇒ (brk , s ′)”
by (metis exec imp bigstep bigstep imp si)

5


