Technische Universitat Miinchen WS 2020/21
Fakultat fir Informatik 21.12.2020
Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 08

Exercise 8.1 Khnaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone
function f we have a fixpoint of f which is a greatest lower bound of P. In this exercise,
we want to prove the Knaster-Tarski theorem.

First we give a construction of the greatest lower bound of all fixed points P of the
function f. This is the union of all sets w smaller than P and f u. Then the task is to
show that this is a fixed point, and that it is the greatest lower bound of all sets in P.
Let us define Inf fixp:

definition Inf fizp :: “('a set = ’a set) = 'a set set = 'a set” where

“Inffizp fP=UJ{v.u CNPNful}”
To work directly with this definition is a little cumbersome, we propose to use the
following two theorems:

lemma Inf_fizp_upperbound: “X C P = X C fX = X C Inf-fizp f P”
by (auto simp: Inf fixp_def)

lemma Inf fizp_least: “(ANu. u CO\P = v C fu=—= v C X) = Inffixp fP C X”
by (auto simp: Inf fixp_def)
Now prove, that Inf_fizp is acually a fixed point of f.

Hint: First prove Inf_fixp f P C f (Inf-fixp f P), this will be used for the other direction.
It may be helpful to first think about the structure of your proof using pen-and-paper
and then translate it into Isar.

lemma Inf fixp:
assumes f: “mono f”
assumes P: “Ap.pe P = fp=1p”

shows “Inf fitp f P = f (Inf-fizp f P)”
Now we prove that it is a lower bound:
lemma Inf fizp_lower: “Inf-fixzp f P C (| P”

And that it is the greatest lower bound:

lemma Inf fixp_greatest:
assumes “f ¢ = ¢” “¢ C (P” shows “q C Inf fizp f P”

Exercise 8.2 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the
bigstep semantics.

datatype com = SKIP
| Assign vname aexp “u=_"11000, 61] 61)
| Seq com com (“s;/ -7 [60, 61] 60)
| If bexp com com (“(IF ./ THEN _/ ELSE .)” [0, 0, 61] 61)
| While bexp com (“(WHILE -/ DO _)” [0, 61] 61)
| Repeat com bexp (“(REPEAT _/ UNTIL .)” 10, 61] 61)

inductive
big_step :: “com X state = state = bool” (infix “=" 55)
where
Skip: “(SKIP,s) = s” |
Assign: “(z = a,8) = s(z = aval a 5)” |

Seq: “[(c1,81) = s2; (c2,82) = s3] = (c135¢2, $1) = s37 |
IfTrue: “[bval b s; (c1,8) = t]| = (IF b THEN ¢y ELSE co, s) = t” |
IfFalse: “[—bval b s; (ce,s) = ¢t | = (IF b THEN ¢y ELSE ca, s) = t” |
WhileFalse: “—bval b s = (WHILE b DO ¢,s) = s” |
While True:

“T bval b s1; (¢,81) = s2; (WHILE b DO ¢, s3) = 3 |

= (WHILE b DO ¢, s1) = s3”

Proof automation:

lemmas [intro] = big_step.intros
lemmas big_step_induct = big_step.induct|split_format(complete)]

inductive_cases SkipE[elim!]: “(SKIP,s) = t”
inductive_cases AssignE[elim!]: “(z == a,s5) = t”
inductive_cases SeqE[elim!]: “(c1;;¢2,81) = s37
inductive_cases IfE[elim!]: “(IF b THEN c1 ELSE c2,s) = t”
inductive_cases WhileE|elim]: “(WHILE b DO c,s) = t”

Execution is deterministic:

theorem big_step_determ: “[(¢,s) = t; (¢,8) => u] = u =1t”
by (induction arbitrary: u rule: big_step.induct) blast+

type_synonym com_den = “(state x state) set”

definition W :: “(state = bool) = com_den = (com_den = com_den)” where
“Wdb de = (Adw. {(s,t). if db s then (s,t) € dc O dw else s=t})”

fun D :: “com = com_den” where

“D SKIP = Id” |

“D(z ==a) ={(s,¢). t = s(z := aval a s)}” |
“D (c1;;¢2) = D(cl) O D(c2)” |

“D (IF b THEN c1 ELSE c2)

= {(s,t). if bval b s then (s,t) € D cl else (s,t) € D c2}7 |
“D (WHILE b DO ¢) = Ilfp (W (bval b) (D ¢))”

lemma W_mono: “mono (Wb r)”

by (unfold W_def mono_def) auto

lemma R_mono: “mono (R br)”
by (unfold R_def mono_def) auto

lemma D_While_If:
“D(WHILE b DO ¢) = D(IF b THEN c;; WHILE b DO ¢ ELSE SKIP)”

proof—
let Yw = “WHILE b DO ¢” let ?2f = “W (bval b) (D ¢)”
have “D 2w = Ifp ?f” by simp

also have “... = ?2f (Ifp ?f)” by(rule lfp_unfold [OF W_mono))
also have “... = D(IF b THEN c;;%w ELSE SKIP)” by (simp add: W_def)
finally show ?thesis .

qed

Equivalence of denotational and big-step semantics:

lemma D_if big_step: “(c¢,s) = t = (s,t) € D(¢)”
proof (induction rule: big_step_induct)
case WhileFulse
with D_While_If show ?case by auto
next
case WhileTrue
show ?case unfolding D_While_If using WhileTrue by auto
nextqed auto

abbreviation Big_step :: “com = com_den” where
“Big_step ¢ = {(s,t). (¢c,s) = t}”

lemma Big_step_if D: “(s,t) € D(c¢) = (s,t) : Big_step ¢”
proof (induction ¢ arbitrary: s t)
case Seq thus ?case by fastforce
next
case (While b c)
let B = “Big_step (WHILE b DO ¢)” let 2f = “W (bval b) (D ¢)”
have “?f B C ¢B” using While.IH by (auto simp: W_def)
from [fp_lowerbound[where ?f = “2f” OF this] While.prems
show ?case by auto
nextqed (auto split: if_splits)

theorem denotational_is_big_step:
“(s,t) € D(¢) = ((¢;8) = 1)”
by (metis D_if-big_step Big_step_if-D|[simplified))

Homework 8.1 Be Original!

Submission until Sunday, Jan 10, 23:59. In total, this exercise is worth 15 points, plus
bonus points for nice submissions.

You should now have a topic to formalize, for example:

e Prove some interesting result about algorithms/graphs/automata/formal language
theory

e Formalize some results from mathematics

e Find interesting modifications of IMP material and prove interesting properties
about them

Do the formalization! You can submit your work via the submission system or by email.

You should set yourself a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended
to do.

Merry Christmas!

