
Technische Universität München WS 2020/21
Fakultät für Informatik 11.1.2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 09

Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b
in variable c.

definition Max :: com

Step 2 Prove these lemmas about max :

lemma [simp]: “ (a::int)<b =⇒ max a b = b”
lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that ex09 .Max satisfies the following Hoare triple:

lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Step 3 Now define a program MUL that returns the product of x and y in variable z.
You may assume that y is not negative.

definition MUL :: com where

Step 4 Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints:

• You may want to use the lemma algebra simps, containing some useful lemmas like
distributivity.

• Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof
for c2, thus instantiating the intermediate assertion, and then do the proof for c1.
However, the first premise of the Seq-rule is about c1. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated] attribute:

1

lemmas Seq bwd = Seq [rotated]

lemmas hoare rule[intro?] = Seq bwd Assign Assign ′ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.

For example, regard the following (wrong) implementation of ex09 .Max :

definition “MAX wrong = (′′a ′′::=N 0 ;; ′′b ′′::=N 0 ;; ′′c ′′::= N 0)”

Prove that MAX wrong also satisfies the specification for ex09 .Max :

lemma “` {λs. True} MAX wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is, that ex09 .Max computes the maximum of the values
of a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for ex09 .Max :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
Max {λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 9.2 Forward Assignment Rule

Think up and prove correct a forward assignment rule, i.e., a rule of the form ` {P} x
::= a {Q}, where Q is some suitable postcondition. Hint: To prove this rule, use the
completeness property, and prove the rule semantically.

lemmas fwd Assign ′ = weaken post [OF fwd Assign]

Redo the proofs for ex09 .Max and MUL from the previous exercise, this time using your
forward assignment rule.

lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Homework 9.1 Fixed point reasoning

Submission until Sunday, Jan 17, 23:59.

In the course, you have seen the Knaster-Tarski least fixed point theorem. The relevant
constant is lfp :: (′a ⇒ ′a) ⇒ ′a, which assumes a complete lattice order ≤ on ′a and
returns, for each monotonic operator f :: ′a ⇒ ′a, its least fixed point lfp f.

2

So far, we’ve only dealt with the case where ′a is ′b set (the type of sets over an arbitrary
type ′b) and ≤ is ⊆ (set inclusion). In this exercise, you will prove a different kind of
fixed point theorem. It says that if there are two injective functions, one from ′a to ′b,
and one the other way round, then there also exists an bijection between ′a and ′b:

theorem
assumes “inj (f :: ′a ⇒ ′b)” and “inj (g :: ′b ⇒ ′a)”
shows “ ∃ h :: ′a ⇒ ′b. inj h ∧ surj h”

This is a fixed point theorem because we will use a least fixed point for the construction
of h. Follow the proof outline below to finish the proof.

theorem fixp:
assumes “inj (f :: ′a ⇒ ′b)” and “inj (g :: ′b ⇒ ′a)”
shows “ ∃ h :: ′a ⇒ ′b. inj h ∧ surj h”

proof
define S where “S ≡ lfp (λX . − (g ‘ (− (f ‘ X))))”
let ?g ′ = “inv g”
define h where “h ≡ λz . if z ∈ S then f z else ?g ′ z”

have “S = − (g ‘ (− (f ‘ S)))”
have ∗: “?g ′ ‘ (− S) = − (f ‘ S)”

show “inj h ∧ surj h”
proof

from ∗ show “surj h”
have “inj on f S”
moreover have “inj on ?g ′ (− S)”
moreover {

fix a b
assume “a ∈ S” “b ∈ − S” and eq : “f a = ?g ′ b”

have False
}

ultimately show “inj h”
qed

qed

Homework 9.2 A Hoare Calculus with Execution Times

Submission until Sunday, Jan 17, 23:59.

In this homework, we will consider a Hoare calculus with execution times.

Step 1 We first give a modified big-step semantics to account for execution times. A
judgement of the form (c, s) ⇒ˆn t has the intended meaning that we can get from
state s to state t by an terminating execution of program c that takes exactly n time
steps.

3

inductive
big step t :: “com × state ⇒ nat ⇒ state ⇒ bool” (“ ⇒ˆ/ ” 55)

where
Skip: “ (SKIP , s) ⇒ˆ1 s” |
Assign: “ (x ::= a,s) ⇒ˆ1 s(x := aval a s)” |
Seq : “ [[(c1,s1) ⇒ˆn1 s2; (c2,s2) ⇒ˆn2 s3; n1+n2 = n3]] =⇒ (c1;;c2, s1) ⇒ˆn3 s3” |
IfTrue: “ [[bval b s; (c1,s) ⇒ˆn1 t ; n3 = Suc n1]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ˆn3 t” |
IfFalse: “ [[¬bval b s; (c2,s) ⇒ˆn2 t ; n3 = Suc n2]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ˆn3 t”
|
WhileFalse: “ [[¬bval b s]] =⇒ (WHILE b DO c, s) ⇒ˆ1 s” |
WhileTrue:
“ [[bval b s1; (c,s1) ⇒ˆn1 s2; (WHILE b DO c, s2) ⇒ˆn2 s3; n1+n2+1 = n3]]

=⇒ (WHILE b DO c, s1) ⇒ˆn3 s3”

Step 2 Some theoretical background: We need extended natural numbers. These are
provided by the HOL−Library .Extended Nat theory. We can imagine extended natural
numbers as the union of all natural numbers IN and ∞. Here are some examples to
illustrate their arithmetic behaviour:

value “3 ::enat” — 3
value “∞::enat” — ∞
value “ (3 ::enat) + 4” — 7
value “ (3 ::enat) + ∞” — ∞
value “eSuc 3” — 4
value “eSuc ∞” — ∞

Step 3 Next, we define a Hoare calculus that also accounts for execution times. As-
sertions are still the same (of type state ⇒ bool), but we introduce new quantitative
assertions of type state ⇒ enat.

type synonym assn = “state ⇒ bool”
type synonym qassn = “state ⇒ enat”

It is thought that the result of a qassn represents a potential, where ∞ corresponds
to a False assertion in classical Hoare calculus. We can hence embed assertions into
quantitative assertions:

fun emb :: “bool ⇒ enat” (“ ↓”) where
“emb False = ∞”
| “emb True = 0”

We can define what it means for a quantitative Hoare triple to be valid:

definition hoare Qvalid :: “qassn ⇒ com ⇒ qassn ⇒ bool”
(“ |=Q {(1)}/ ()/ {(1)}” 50) where

“ |=Q {P} c {Q} ←→ (∀ s. P s < ∞ −→ (∃ t p. ((c,s) ⇒ˆp t) ∧ P s ≥ p + Q t))”

4

Finally, we define quantitative Hoare judgements. The idea is that both pre- and post-
condition assign an enat to a state that is then decreased as the execution progresses.
We will see an example in the next step.

inductive hoareQ :: “qassn ⇒ com ⇒ qassn ⇒ bool” (“`Q ({(1)}/ ()/ {(1)})” 50) where

— Skipping and assignment both decrease the potential.
SkipQ : “`Q {λs. eSuc (P s)} SKIP {P}” |
AssignQ : “`Q {λs. eSuc (P (s[a/x]))} x ::=a {P}” |

— IF THEN ELSE is a bit tricky: We decrease the potential by one before executing either
branch. Then we add 0 to the branch that gets executed and ∞ to the branch that does not
get executed. This is similar to how in classical Hoare calculus, the branch that does not get
executed gets False as precondition.
IfQ : “ [[`Q {λs. P s + ↓(bval b s)} c1 {Q};

`Q {λs. P s + ↓(¬ bval b s)} c2 {Q}]]
=⇒ `Q {λs. eSuc (P s)} IF b THEN c1 ELSE c2 {Q}” |

— Sequence works about as expected.
SeqQ : “ [[`Q {P1} c1 {P2}; `Q {P2} c2 {P3}]] =⇒ `Q {P1} c1;;c2 {P3}” |

— WHILE DO is a combination of conditional and sequence. The invariant is also a function
to enat.
WhileQ :

“`Q {λs. I s + ↓(bval b s)} c {λt . I t + 1}
=⇒ `Q {λs. I s + 1} WHILE b DO c {λs. I s + ↓(¬ bval b s)}” |

— The consequence rule also works like in the classic Hoare calculus.
conseqQ : “ [[`Q {P} c {Q};

∧
s. P s ≤ P ′ s;

∧
s. Q ′ s ≤ Q s]] =⇒

`Q {P ′} c {Q ′}”

Step 4 To exercise our newly-introduce Hoare calculus with timing, we will prove a
Hoare triple for an example program that computes the sum of numbers from 1 to n.
However, we are only interested in computing the total runtime and disregard correctness
properties.

definition wsum :: com where
“wsum =

′′y ′′ ::= N 0 ;;
WHILE Less (N 0) (V ′′x ′′)
DO (′′y ′′ ::= Plus (V ′′y ′′) (V ′′x ′′);;

′′x ′′ ::= Plus (V ′′x ′′) (N (− 1)))”

The following lemma states the the wsum program will take at most 2 + 3 ∗ n steps
to complete. Prove it!

theorem wsum: “`Q {λs. enat (2 + 3∗n) + ↓ (s ′′x ′′ = int n)} wsum {λs. 0}”
unfolding wsum def
apply(rule SeqQ [rotated])

5

apply(rule conseqQ)
apply(rule WhileQ [where I =“λs. enat (3 ∗ nat (s ′′x ′′))”])

Step 5 You task is to prove a fragment of soundness (without the while case). The
SKIP-case is already demonstrated below. Prove the remaining extracted lemmas. You
don’t need to prove the final theorem.

lemma Skip sound : “ |=Q {λa. eSuc (P a)} SKIP {P}”
unfolding hoare Qvalid def proof (safe)

fix s assume “eSuc (P s) < ∞”
then have “ (SKIP , s) ⇒ˆ1 s ∧ enat 1 + P s ≤ eSuc (P s)”

using Skip eSuc def by (auto split : enat .splits)
thus “ ∃ t n. (SKIP , s) ⇒ˆn t ∧ enat n + P t ≤ eSuc (P s)”

by blast
qed

theorem Assign sound : “ |=Q {λb. eSuc (P (b[a/x]))} x ::=a {P}”
theorem conseq sound :

assumes hyps: “
∧

s. P s ≤ P ′ s” “
∧

s. Q ′ s ≤ Q s”
assumes IH : “ |=Q {P} c {Q}”
shows “ |=Q {P ′} c {Q ′}”

theorem If sound :
assumes “ |=Q {λa. P a + ↓ (bval b a)} c1 {Q}”
assumes “ |=Q {λa. P a + ↓ (¬ bval b a)} c2 {Q}”
shows“ |=Q {λa. eSuc (P a)} IF b THEN c1 ELSE c2 {Q}”

theorem Seq sound :
assumes “ |=Q {P1} c1 {P2}”
assumes “ |=Q {P2} c2 {P3}”
shows “ |=Q {P1} c1;;c2 {P3}”

theorem hoareQ sound : “`Q {P} c {Q} =⇒ |=Q {P} c {Q}”

Homework 9.3 Traces (Bonus Exercise)

Submission until Sunday, Jan 17, 23:59. This is a bonus exercise worth 4 points.

In this exercise, we explore a new computational model: event traces.

An event is either an action which has an effect (in our IMP language, an assignment),
or a test:

datatype event = Action string aexp | Test bexp

A trace is a sequence of events, which corresponds to a computation.

Given an event trace and a starting state, the exec function ’replays’ the computation.
All of the tests in the event trace should succeed; if one fails, the execution stops:

6

fun exec :: “state ⇒ event list ⇒ state option” where
“exec s [] = Some s” |
“exec s (Action x a # ts) = exec (s(x := aval a s)) ts” |
“exec s (Test b # ts) = (if bval b s then exec s ts else None)”

abbreviation “example ≡ [Action ′′x ′′ (N 1), Test (Less (N 0) (V ′′x ′′))]”
value “case (exec <> example) of Some t ⇒ t ′′x ′′”

We now want to compute the set of possible event traces for a given command. For
instance, IF (Bc True) THEN ′′x ′′::=(N 1) ELSE SKIP has the traces {[Test (Bc
True), Action ′′x ′′ (N 1)], [Test (Not (Bc True))]}.
Start by defining an predicate trace, which characterizes traces for a command:

inductive trace :: “com ⇒ event list ⇒ bool”

From this it should be easy to define the set of all possible traces:

abbreviation traces :: “com ⇒ event list set”

Prove that that every big step has a corresponding trace:

theorem big traces: “ (c,s) ⇒ t =⇒ ∃ ts ∈ traces c. exec s ts = Some t”

Next, prove the other direction:

theorem trace big : “ [[trace c ts; exec s ts = Some t]] =⇒ (c,s) ⇒ t”

Finally, the equivalence to big-step semantics follows.

lemma “ (c,s) ⇒ t ←→ (∃ ts ∈ traces c. exec s ts = Some t)”
using big traces trace big by auto

7

