Semantics of Programming Languages #### Exercise Sheet 12 ## Exercise 12.1 Termination for sign analysis ``` Recall the abstract interpreter from the last sheet: datatype \ sign = Pos \mid Zero \mid Neg \mid Any instantiation \ sign :: semilattice_sup_top begin definition less_eq_sign where "x \le y = (y = Any \lor x = y)" definition less_sign where "x < y = (x \le y \land \neg y \le (x::sign))" definition sup_sign where "x \sqcup y = (if \ x = y \ then \ x \ else \ Any)" definition top_sign where "\top = Any" instance by standard (auto simp: less_eq_sign_def less_sign_def sup_sign_def top_sign_def) end fun \gamma_sign :: "sign \Rightarrow val set" where "\gamma_sign Neg = {i. i < 0}" | "\gamma_sign Pos = \{i. i > 0\}" | "\gamma_sign Zero = \{\theta\}" | "\gamma_sign Any = UNIV" fun num_sign :: "val \Rightarrow sign" where "num_sign \ i = (if \ i = 0 \ then \ Zero \ else \ if \ i > 0 \ then \ Pos \ else \ Neg)" fun plus_sign :: "sign \Rightarrow sign \Rightarrow sign" where "plus_sign\ y\ Zero = y" | "plus_sign Zero y = y" | "plus_sign x y = (if x = y then x else Any)" global_interpretation Val_semilattice ``` where $\gamma = \gamma_sign$ and $num' = num_sign$ and $plus' = plus_sign$ ``` proof (standard, goal_cases) case (4 - a1 - a2) thus ?case by (induction a1 a2 rule: plus_sign.induct) (auto simp add:mod_add_eq) qed (auto simp: less_eq_sign_def top_sign_def) global_interpretation Abs_Int where \gamma = \gamma_Sign and num' = num_Sign and plus' = plus_Sign defines aval_Sign = aval' and step_Sign = step' and AI_Sign = AI ... ``` Define a measure function on the abstract domain, which can be used to prove that the analysis always terminates. Define a function m_sign from the sign domain into the natural numbers such that - $x < y \Longrightarrow m_sign \ x > m_sign \ y$ - $m_{-}sign \ x \leq h_{-}sign$ where h-sign is the height of the sign domain. ``` abbreviation h_sign :: nat fun m_sign :: "sign \Rightarrow nat" global_interpretation Abs_Int_mono where \gamma = \gamma_sign and num' = num_sign and plus' = plus_sign global_interpretation Abs_Int_measure where \gamma = \gamma_sign and num' = num_sign and plus' = plus_sign and m = m_sign m_s ``` ### Exercise 12.2 Inverse Analysis Consider a similar analysis based on this abstract domain: ``` \mathbf{datatype} \ \mathit{sign}\theta = \mathit{None} \mid \mathit{Neg} \mid \mathit{Pos}\theta \mid \mathit{Any} ``` ``` fun \gamma_0 :: "sign0 ⇒ val set" where "\gamma_0 None = {}" | "\gamma_0 Neg = {i. i < 0}" | "\gamma_0 Pos0 = {i. i ≥ 0}" | "\gamma_0 Any = UNIV" ``` $\implies i1 \in \gamma_- 0 \ a1' \land i2 \in \gamma_- 0 \ a2'''$ Define inverse analyses for "+" and "<" and prove the required correctness properties: ``` fun inv_plus' :: "sign0 \Rightarrow sign0 \Rightarrow sign0 \Rightarrow sign0 * sign0" lemma "[inv_plus' a a1 a2 = (a1',a2'); i1 ∈ \gamma_0 a1; i2 ∈ \gamma_0 a2; i1+i2 ∈ \gamma_0 a]| \Rightarrow i1 ∈ \gamma_0 a1' \wedge i2 ∈ \gamma_0 a2' " fun inv_less' :: "bool \Rightarrow sign0 \Rightarrow sign0 \Rightarrow sign0 * sign0" lemma "[inv_less' bv a1 a2 = (a1',a2'); i1 ∈ \gamma_0 a1; i2 ∈ \gamma_0 a2; (i1<i2) = bv]| ``` ### Homework 12.1 Al Table Submission until Sunday, Feb 7, 23:59. Consider the following IMP program: ``` r := 11; a := 11 + 11; WHILE b DO (r := r + 1; a := a - 2); r := a + 1 ``` Add annotations for parity analysis to this program, and iterate on it the step' function until a fixed point is reached. (More precisely, let C be the annotated program; you need to compute $(step' \top)^0 C$, $(step' \top)^1 C$, $(step' \top)^2 C$, etc.). Document the results of each iteration in a table. For brevity, only write down changed values, and denote x, y for $\{r:=x, a:=y\}$. ## Homework 12.2 Al for finite words Submission until Sunday, Feb 7, 23:59. We change the language of arithmetic expression in IMP to bitwise arithmetic on 4-bit words. First, we define a type *word* that holds precisely four elements. We can instantiate this with *bool* to obtain a type for 4-bit words. ``` datatype 'a word = Word 'a 'a 'a 'a ``` ``` type_synonym vname = string type_synonym val = "bool word" type_synonym state = "vname \Rightarrow val" datatype aexp = N \ val \ | \ V \ vname \ | \ Bit_And \ aexp \ aexp \ | \ Bit_Or \ aexp \ aexp ``` The abstract interpretation framework is already set up for this IMP variant. Your task is to define abstract interpretation that assigns each bit in a word *True*, *False*, either, or none. ``` \mathbf{datatype} \ parity = T \mid F \mid Either \mid None ``` First, instantiate the abstract interpreter with termination: ``` fun \gamma-parity fun conj-parity fun disj-parity fun num-parity instantiation parity :: "{order, semilattice_sup_top, bounded_lattice}}" ``` ``` begin ``` ``` definition less_eq_parity definition less_parity definition sup_parity \mathbf{definition} \ \mathit{inf_parity} definition top_parity definition bot_parity instance end type_synonym word_parity = "parity word" fun \gamma_{-}word_{-}parity :: "word_{-}parity <math>\Rightarrow val \ set" definition and_parity :: "word_parity <math>\Rightarrow word_parity \Rightarrow word_parity" definition or_parity :: "word_parity <math>\Rightarrow word_parity \Rightarrow word_parity" definition num_word_parity :: "val <math>\Rightarrow word_parity" {f global_interpretation} Val_semilattice where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity or_parity global_interpretation Abs_Int where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = defines step_parity = step' and AI_parity = AI global_interpretation Abs_Int_mono where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity or_parity proof (standard, goal_cases) Then, instantiate the inverse analysis framework: global_interpretation Val_lattice_qamma where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity or_parity definition test_num_word_parity :: "val <math>\Rightarrow word_parity \Rightarrow bool" definition inv_and_word_parity :: "word_parity \Rightarrow word_parity \Rightarrow word_parity \Rightarrow (word_parity \times word_parity)" definition inv_or_word_parity :: "word_parity \Rightarrow word_parity \Rightarrow word_parity \Rightarrow (word_parity \times word_parity)" Your inverse analysis of the less may be rather approximative, but not trivial. For a more precise analysis, up to three bonus points are awarded. definition inv_less_word_parity :: "bool \Rightarrow word_parity \Rightarrow word_parity \Rightarrow (word_parity \times word_parity)" {f global_interpretation} Abs_Int_inv where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity and test_num' = test_num_word_parity and inv_and' = inv_and_word_parity ``` and $inv_or' = inv_or_word_parity$ and $inv_less' = inv_less_word_parity$ defines $step_parity' = step'$ and $AI_parity' = AI'$