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Exercise 12.1 Termination for sign analysis

Recall the abstract interpreter from the last sheet:

datatype sign = Pos | Zero | Neg | Any

instantiation sign :: semilattice sup top
begin

definition less eq sign where “x ≤ y = (y = Any ∨ x=y)”

definition less sign where “x < y = (x ≤ y ∧ ¬ y ≤ (x ::sign))”

definition sup sign where “x t y = (if x = y then x else Any)”

definition top sign where “> = Any”

instance by standard (auto simp: less eq sign def less sign def sup sign def top sign def )

end

fun γ sign :: “sign ⇒ val set” where
“ γ sign Neg = {i . i < 0}” |
“ γ sign Pos = {i . i > 0}” |
“ γ sign Zero = {0}” |
“ γ sign Any = UNIV”

fun num sign :: “val ⇒ sign” where
“num sign i = (if i = 0 then Zero else if i > 0 then Pos else Neg)”

fun plus sign :: “sign ⇒ sign ⇒ sign” where
“plus sign y Zero = y” |
“plus sign Zero y = y” |
“plus sign x y = (if x = y then x else Any)”

global interpretation Val semilattice
where γ = γ sign and num ′ = num sign and plus ′ = plus sign
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proof (standard , goal cases)
case (4 a1 a2 ) thus ?case

by (induction a1 a2 rule: plus sign.induct) (auto simp add :mod add eq)
qed (auto simp: less eq sign def top sign def )

global interpretation Abs Int
where γ = γ sign and num ′ = num sign and plus ′ = plus sign
defines aval sign = aval ′ and step sign = step ′ and AI sign = AI
..

Define a measure function on the abstract domain, which can be used to prove that
the analysis always terminates. Define a function m sign from the sign domain into the
natural numbers such that

• x < y =⇒ m sign x > m sign y

• m sign x ≤ h sign

where h sign is the height of the sign domain.

abbreviation h sign :: nat
fun m sign :: “sign ⇒ nat”

global interpretation Abs Int mono
where γ = γ sign and num ′ = num sign and plus ′ = plus sign

global interpretation Abs Int measure
where γ = γ sign and num ′ = num sign and plus ′ = plus sign
and m = m sign and h = h sign

Exercise 12.2 Inverse Analysis

Consider a similar analysis based on this abstract domain:

datatype sign0 = None | Neg | Pos0 | Any

fun γ 0 :: “sign0 ⇒ val set” where
“ γ 0 None = {}” |
“ γ 0 Neg = {i . i < 0}” |
“ γ 0 Pos0 = {i . i ≥ 0}” |
“ γ 0 Any = UNIV”

Define inverse analyses for “+” and “<” and prove the required correctness properties:

fun inv plus ′ :: “sign0 ⇒ sign0 ⇒ sign0 ⇒ sign0 ∗ sign0”
lemma
“ [[ inv plus ′ a a1 a2 = (a1 ′,a2 ′); i1 ∈ γ 0 a1 ; i2 ∈ γ 0 a2 ; i1+i2 ∈ γ 0 a ]]
=⇒ i1 ∈ γ 0 a1 ′ ∧ i2 ∈ γ 0 a2 ′ ”

fun inv less ′ :: “bool ⇒ sign0 ⇒ sign0 ⇒ sign0 ∗ sign0”
lemma
“ [[ inv less ′ bv a1 a2 = (a1 ′,a2 ′); i1 ∈ γ 0 a1 ; i2 ∈ γ 0 a2 ; (i1<i2 ) = bv ]]
=⇒ i1 ∈ γ 0 a1 ′ ∧ i2 ∈ γ 0 a2 ′”
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Homework 12.1 AI Table

Submission until Sunday, Feb 7, 23:59.

Consider the following Imp program:

r := 11;

a := 11 + 11;

WHILE b DO (

r := r + 1;

a := a - 2

);

r := a + 1

Add annotations for parity analysis to this program, and iterate on it the step′ function
until a fixed point is reached. (More precisely, let C be the annotated program; you
need to compute (step′ >)0 C, (step′ >)1 C, (step′ >)2 C, etc.). Document the results
of each iteration in a table. For brevity, only write down changed values, and denote x ,y
for {r :=x ,a:=y}.

Homework 12.2 AI for finite words

Submission until Sunday, Feb 7, 23:59.

We change the language of arithmetic expression in IMP to bitwise arithmetic on 4-
bit words. First, we define a type word that holds precisely four elements. We can
instantiate this with bool to obtain a type for 4-bit words.

datatype ′a word = Word ′a ′a ′a ′a

type synonym vname = string
type synonym val = “bool word”
type synonym state = “vname ⇒ val”
datatype aexp = N val | V vname | Bit And aexp aexp | Bit Or aexp aexp

The abstract interpretation framework is already set up for this IMP variant.

Your task is to define abstract interpretation that assigns each bit in a word True, False,
either, or none.

datatype parity = T | F | Either | None

First, instantiate the abstract interpreter with termination:

fun γ parity
fun conj parity
fun disj parity
fun num parity
instantiation parity :: “ {order , semilattice sup top, bounded lattice}”

3



begin

definition less eq parity
definition less parity
definition sup parity
definition inf parity
definition top parity
definition bot parity
instance
end

type synonym word parity = “parity word”

fun γ word parity :: “word parity ⇒ val set”
definition and parity :: “word parity ⇒ word parity ⇒ word parity”
definition or parity :: “word parity ⇒ word parity ⇒ word parity”
definition num word parity :: “val ⇒ word parity”
global interpretation Val semilattice

where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =
or parity
global interpretation Abs Int

where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =
or parity

defines step parity = step ′ and AI parity = AI
global interpretation Abs Int mono
where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =
or parity
proof (standard , goal cases)

Then, instantiate the inverse analysis framework:

global interpretation Val lattice gamma
where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =

or parity
definition test num word parity :: “val ⇒ word parity ⇒ bool”
definition inv and word parity ::
“word parity ⇒ word parity ⇒ word parity ⇒ (word parity × word parity)”

definition inv or word parity ::
“word parity ⇒ word parity ⇒ word parity ⇒ (word parity × word parity)”

Your inverse analysis of the less may be rather approximative, but not trivial.

For a more precise analysis, up to three bonus points are awarded.

definition inv less word parity ::
“bool ⇒ word parity ⇒ word parity ⇒ (word parity × word parity)”

global interpretation Abs Int inv
where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =

or parity
and test num ′ = test num word parity and inv and ′ = inv and word parity
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and inv or ′ = inv or word parity and inv less ′ = inv less word parity
defines step parity ′ = step ′ and AI parity ′ = AI ′
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