
Technische Universität München WS 2020/21
Fakultät für Informatik 1.2.2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Termination for sign analysis

Recall the abstract interpreter from the last sheet:

datatype sign = Pos | Zero | Neg | Any

instantiation sign :: semilattice sup top
begin

definition less eq sign where “x ≤ y = (y = Any ∨ x=y)”

definition less sign where “x < y = (x ≤ y ∧ ¬ y ≤ (x ::sign))”

definition sup sign where “x t y = (if x = y then x else Any)”

definition top sign where “> = Any”

instance by standard (auto simp: less eq sign def less sign def sup sign def top sign def)

end

fun γ sign :: “sign ⇒ val set” where
“ γ sign Neg = {i . i < 0}” |
“ γ sign Pos = {i . i > 0}” |
“ γ sign Zero = {0}” |
“ γ sign Any = UNIV”

fun num sign :: “val ⇒ sign” where
“num sign i = (if i = 0 then Zero else if i > 0 then Pos else Neg)”

fun plus sign :: “sign ⇒ sign ⇒ sign” where
“plus sign y Zero = y” |
“plus sign Zero y = y” |
“plus sign x y = (if x = y then x else Any)”

global interpretation Val semilattice
where γ = γ sign and num ′ = num sign and plus ′ = plus sign

1

proof (standard , goal cases)
case (4 a1 a2) thus ?case

by (induction a1 a2 rule: plus sign.induct) (auto simp add :mod add eq)
qed (auto simp: less eq sign def top sign def)

global interpretation Abs Int
where γ = γ sign and num ′ = num sign and plus ′ = plus sign
defines aval sign = aval ′ and step sign = step ′ and AI sign = AI
..

Define a measure function on the abstract domain, which can be used to prove that
the analysis always terminates. Define a function m sign from the sign domain into the
natural numbers such that

• x < y =⇒ m sign x > m sign y

• m sign x ≤ h sign

where h sign is the height of the sign domain.

abbreviation h sign :: nat
fun m sign :: “sign ⇒ nat”

global interpretation Abs Int mono
where γ = γ sign and num ′ = num sign and plus ′ = plus sign

global interpretation Abs Int measure
where γ = γ sign and num ′ = num sign and plus ′ = plus sign
and m = m sign and h = h sign

Exercise 12.2 Inverse Analysis

Consider a similar analysis based on this abstract domain:

datatype sign0 = None | Neg | Pos0 | Any

fun γ 0 :: “sign0 ⇒ val set” where
“ γ 0 None = {}” |
“ γ 0 Neg = {i . i < 0}” |
“ γ 0 Pos0 = {i . i ≥ 0}” |
“ γ 0 Any = UNIV”

Define inverse analyses for “+” and “<” and prove the required correctness properties:

fun inv plus ′ :: “sign0 ⇒ sign0 ⇒ sign0 ⇒ sign0 ∗ sign0”
lemma
“ [[inv plus ′ a a1 a2 = (a1 ′,a2 ′); i1 ∈ γ 0 a1 ; i2 ∈ γ 0 a2 ; i1+i2 ∈ γ 0 a]]
=⇒ i1 ∈ γ 0 a1 ′ ∧ i2 ∈ γ 0 a2 ′ ”

fun inv less ′ :: “bool ⇒ sign0 ⇒ sign0 ⇒ sign0 ∗ sign0”
lemma
“ [[inv less ′ bv a1 a2 = (a1 ′,a2 ′); i1 ∈ γ 0 a1 ; i2 ∈ γ 0 a2 ; (i1<i2) = bv]]
=⇒ i1 ∈ γ 0 a1 ′ ∧ i2 ∈ γ 0 a2 ′”

2

Homework 12.1 AI Table

Submission until Sunday, Feb 7, 23:59.

Consider the following Imp program:

r := 11;

a := 11 + 11;

WHILE b DO (

r := r + 1;

a := a - 2

);

r := a + 1

Add annotations for parity analysis to this program, and iterate on it the step′ function
until a fixed point is reached. (More precisely, let C be the annotated program; you
need to compute (step′ >)0 C, (step′ >)1 C, (step′ >)2 C, etc.). Document the results
of each iteration in a table. For brevity, only write down changed values, and denote x ,y
for {r :=x ,a:=y}.

Homework 12.2 AI for finite words

Submission until Sunday, Feb 7, 23:59.

We change the language of arithmetic expression in IMP to bitwise arithmetic on 4-
bit words. First, we define a type word that holds precisely four elements. We can
instantiate this with bool to obtain a type for 4-bit words.

datatype ′a word = Word ′a ′a ′a ′a

type synonym vname = string
type synonym val = “bool word”
type synonym state = “vname ⇒ val”
datatype aexp = N val | V vname | Bit And aexp aexp | Bit Or aexp aexp

The abstract interpretation framework is already set up for this IMP variant.

Your task is to define abstract interpretation that assigns each bit in a word True, False,
either, or none.

datatype parity = T | F | Either | None

First, instantiate the abstract interpreter with termination:

fun γ parity
fun conj parity
fun disj parity
fun num parity
instantiation parity :: “ {order , semilattice sup top, bounded lattice}”

3

begin

definition less eq parity
definition less parity
definition sup parity
definition inf parity
definition top parity
definition bot parity
instance
end

type synonym word parity = “parity word”

fun γ word parity :: “word parity ⇒ val set”
definition and parity :: “word parity ⇒ word parity ⇒ word parity”
definition or parity :: “word parity ⇒ word parity ⇒ word parity”
definition num word parity :: “val ⇒ word parity”
global interpretation Val semilattice

where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =
or parity
global interpretation Abs Int

where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =
or parity

defines step parity = step ′ and AI parity = AI
global interpretation Abs Int mono
where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =
or parity
proof (standard , goal cases)

Then, instantiate the inverse analysis framework:

global interpretation Val lattice gamma
where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =

or parity
definition test num word parity :: “val ⇒ word parity ⇒ bool”
definition inv and word parity ::
“word parity ⇒ word parity ⇒ word parity ⇒ (word parity × word parity)”

definition inv or word parity ::
“word parity ⇒ word parity ⇒ word parity ⇒ (word parity × word parity)”

Your inverse analysis of the less may be rather approximative, but not trivial.

For a more precise analysis, up to three bonus points are awarded.

definition inv less word parity ::
“bool ⇒ word parity ⇒ word parity ⇒ (word parity × word parity)”

global interpretation Abs Int inv
where γ = γ word parity and num ′ = num word parity and and ′ = and parity and or ′ =

or parity
and test num ′ = test num word parity and inv and ′ = inv and word parity

4

and inv or ′ = inv or word parity and inv less ′ = inv less word parity
defines step parity ′ = step ′ and AI parity ′ = AI ′

5

