Semantics of Programming Languages

Exercise Sheet 12

Exercise 12.1 Termination for sign analysis

```
Recall the abstract interpreter from the last sheet:
datatype \ sign = Pos \mid Zero \mid Neg \mid Any
instantiation \ sign :: semilattice\_sup\_top
begin
definition less\_eq\_sign where "x \le y = (y = Any \lor x = y)"
definition less_sign where "x < y = (x \le y \land \neg y \le (x::sign))"
definition sup_sign where "x \sqcup y = (if \ x = y \ then \ x \ else \ Any)"
definition top\_sign where "\top = Any"
instance by standard (auto simp: less_eq_sign_def less_sign_def sup_sign_def top_sign_def)
end
fun \gamma_sign :: "sign \Rightarrow val set" where
"\gamma_sign Neg = {i. i < 0}" |
"\gamma_sign Pos = \{i. i > 0\}" |
"\gamma_sign Zero = \{\theta\}" |
"\gamma_sign Any = UNIV"
fun num\_sign :: "val \Rightarrow sign" where
"num\_sign \ i = (if \ i = 0 \ then \ Zero \ else \ if \ i > 0 \ then \ Pos \ else \ Neg)"
fun plus\_sign :: "sign \Rightarrow sign \Rightarrow sign" where
"plus\_sign\ y\ Zero = y" |
"plus_sign Zero y = y" |
"plus_sign x y = (if x = y then x else Any)"
global_interpretation Val_semilattice
```

where $\gamma = \gamma_sign$ and $num' = num_sign$ and $plus' = plus_sign$

```
proof (standard, goal_cases)

case (4 - a1 - a2) thus ?case

by (induction a1 a2 rule: plus_sign.induct) (auto simp add:mod_add_eq)

qed (auto simp: less_eq_sign_def top_sign_def)

global_interpretation Abs_Int

where \gamma = \gamma_Sign and num' = num_Sign and plus' = plus_Sign

defines aval_Sign = aval' and step_Sign = step' and AI_Sign = AI

...
```

Define a measure function on the abstract domain, which can be used to prove that the analysis always terminates. Define a function m_sign from the sign domain into the natural numbers such that

- $x < y \Longrightarrow m_sign \ x > m_sign \ y$
- $m_{-}sign \ x \leq h_{-}sign$

where h-sign is the height of the sign domain.

```
abbreviation h\_sign :: nat fun m\_sign :: "sign \Rightarrow nat" global_interpretation Abs\_Int\_mono where \gamma = \gamma\_sign and num' = num\_sign and plus' = plus\_sign global_interpretation Abs\_Int\_measure where \gamma = \gamma\_sign and num' = num\_sign and plus' = plus\_sign and m = m\_sign and m = m\_s
```

Exercise 12.2 Inverse Analysis

Consider a similar analysis based on this abstract domain:

```
\mathbf{datatype} \ \mathit{sign}\theta = \mathit{None} \mid \mathit{Neg} \mid \mathit{Pos}\theta \mid \mathit{Any}
```

```
fun \gamma_0 :: "sign0 ⇒ val set" where "\gamma_0 None = {}" | "\gamma_0 Neg = {i. i < 0}" | "\gamma_0 Pos0 = {i. i ≥ 0}" | "\gamma_0 Any = UNIV"
```

 $\implies i1 \in \gamma_- 0 \ a1' \land i2 \in \gamma_- 0 \ a2'''$

Define inverse analyses for "+" and "<" and prove the required correctness properties:

```
fun inv\_plus' :: "sign0 \Rightarrow sign0 \Rightarrow sign0 \Rightarrow sign0 * sign0"
lemma

"[ inv\_plus' a a1 a2 = (a1',a2'); i1 ∈ \gamma\_0 a1; i2 ∈ \gamma\_0 a2; i1+i2 ∈ \gamma\_0 a ]|
\Rightarrow i1 ∈ \gamma\_0 a1' \wedge i2 ∈ \gamma\_0 a2' "

fun inv\_less' :: "bool \Rightarrow sign0 \Rightarrow sign0 \Rightarrow sign0 * sign0"
lemma

"[ inv\_less' bv a1 a2 = (a1',a2'); i1 ∈ \gamma\_0 a1; i2 ∈ \gamma\_0 a2; (i1<i2) = bv ]|
```

Homework 12.1 Al Table

Submission until Sunday, Feb 7, 23:59. Consider the following IMP program:

```
r := 11;
a := 11 + 11;
WHILE b DO (
   r := r + 1;
   a := a - 2
);
r := a + 1
```

Add annotations for parity analysis to this program, and iterate on it the step' function until a fixed point is reached. (More precisely, let C be the annotated program; you need to compute $(step' \top)^0 C$, $(step' \top)^1 C$, $(step' \top)^2 C$, etc.). Document the results of each iteration in a table. For brevity, only write down changed values, and denote x, y for $\{r:=x, a:=y\}$.

Homework 12.2 Al for finite words

Submission until Sunday, Feb 7, 23:59.

We change the language of arithmetic expression in IMP to bitwise arithmetic on 4-bit words. First, we define a type *word* that holds precisely four elements. We can instantiate this with *bool* to obtain a type for 4-bit words.

```
datatype 'a word = Word 'a 'a 'a 'a
```

```
type_synonym vname = string

type_synonym val = "bool word"

type_synonym state = "vname \Rightarrow val"

datatype aexp = N \ val \ | \ V \ vname \ | \ Bit\_And \ aexp \ aexp \ | \ Bit\_Or \ aexp \ aexp
```

The abstract interpretation framework is already set up for this IMP variant.

Your task is to define abstract interpretation that assigns each bit in a word *True*, *False*, either, or none.

```
\mathbf{datatype} \ parity = T \mid F \mid Either \mid None
```

First, instantiate the abstract interpreter with termination:

```
fun \gamma-parity
fun conj-parity
fun disj-parity
fun num-parity
instantiation parity :: "{order, semilattice_sup_top, bounded_lattice}}"
```

```
begin
```

```
definition less_eq_parity
definition less_parity
definition sup\_parity
\mathbf{definition} \ \mathit{inf\_parity}
definition top\_parity
definition bot_parity
instance
end
type_synonym word_parity = "parity word"
fun \gamma_{-}word_{-}parity :: "word_{-}parity <math>\Rightarrow val \ set"
definition and\_parity :: "word\_parity <math>\Rightarrow word\_parity \Rightarrow word\_parity"
definition or\_parity :: "word\_parity <math>\Rightarrow word\_parity \Rightarrow word\_parity"
definition num\_word\_parity :: "val <math>\Rightarrow word\_parity"
{f global\_interpretation} Val\_semilattice
  where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity
or_parity
global_interpretation Abs_Int
  where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' =
 defines step\_parity = step' and AI\_parity = AI
global_interpretation Abs_Int_mono
where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity
or_parity
proof (standard, goal_cases)
Then, instantiate the inverse analysis framework:
global_interpretation Val_lattice_qamma
  where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity
or_parity
definition test\_num\_word\_parity :: "val <math>\Rightarrow word\_parity \Rightarrow bool"
definition inv\_and\_word\_parity ::
  "word\_parity \Rightarrow word\_parity \Rightarrow word\_parity \Rightarrow (word\_parity \times word\_parity)"
definition inv\_or\_word\_parity ::
  "word\_parity \Rightarrow word\_parity \Rightarrow word\_parity \Rightarrow (word\_parity \times word\_parity)"
Your inverse analysis of the less may be rather approximative, but not trivial.
For a more precise analysis, up to three bonus points are awarded.
definition inv\_less\_word\_parity ::
  "bool \Rightarrow word_parity \Rightarrow word_parity \Rightarrow (word_parity \times word_parity)"
{f global\_interpretation} Abs\_Int\_inv
  where \gamma = \gamma_{-}word_{-}parity and num' = num_{-}word_{-}parity and and' = and_{-}parity and or' = and_{-}parity
 and test_num' = test_num_word_parity and inv_and' = inv_and_word_parity
```

and $inv_or' = inv_or_word_parity$ and $inv_less' = inv_less_word_parity$ defines $step_parity' = step'$ and $AI_parity' = AI'$