Erratum to the proof of Lemma 10.3.26, page 249

In the sequence of inequations

$$
-\sum_{\substack{1 \leq j \leq n \\ a_{i, j}<0}}\left|a_{i, j}\right| \leq\left(M_{k, n} \cdot y \downarrow^{(\ell)}\right)_{i} \leq \sum_{\substack{1 \leq j \leq n \\ a_{i, j} \geq 0}}\left|a_{i, j}\right|,
$$

$\left(M_{k, n} \cdot y \downarrow^{(\ell)}\right)_{i}$ must be replaced by $-\left(M_{k, n} \cdot y \downarrow^{(\ell)}\right)_{i}$. Alternatively, one can use the following sequence of inequations:

$$
\sum_{\substack{1 \leq j \leq n \\ a_{i, j}<0}}\left|a_{i, j}\right| \geq\left(M_{k, n} \cdot y \downarrow^{(\ell)}\right)_{i} \geq-\sum_{\substack{1 \leq j \leq n \\ a_{i, j} \geq 0}}\left|a_{i, j}\right| .
$$

The fact that, for all i, there are at most $1+\sum_{1 \leq j \leq n}\left|a_{i, j}\right|$ possible values for $\left(M_{k, n} \cdot y \downarrow^{(\ell)}\right)_{i}$ still follows from these new sequences of inequations. However, to have

$$
1+\sum_{1 \leq j \leq n}\left|a_{i, j}\right| \leq 1+\left\|M_{k, n}\right\|,
$$

the definition of $\left\|M_{k, n}\right\|$ (see Definition 10.3.23) must be modified. Instead of summing up the absolute values in the columns, one must sum up the absolute values in the rows, i.e., the definition of $\left\|M_{k, n}\right\|$ should be

$$
\left\|M_{k, n}\right\|:=\max \left\{\sum_{1 \leq j \leq n}\left|a_{i, j}\right| \mid 1 \leq i \leq k\right\} .
$$

