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We introduce Jinja, a Java-like programming language with a formal semantics designed to exhibit
core features of the Java language architecture. Jinja is a compromise between realism of the
language and tractability and clarity of the formal semantics. The following aspects are formalised:
a big and a small step operational semantics for Jinja and a proof of their equivalence; a type
system and a definite initialisation analysis; a type safety proof of the small step semantics; a
virtual machine (JVM), its operational semantics and its type system; a type safety proof for
the JVM; a bytecode verifier, i.e. data flow analyser for the JVM; a correctness proof of the
bytecode verifier w.r.t. the type system; a compiler and a proof that it preserves semantics and
well-typedness.

The emphasis of this work is not on particular language features but on providing a unified
model of the source language, the virtual machine and the compiler. The whole development has
been carried out in the theorem prover Isabelle/HOL.

Categories and Subject Descriptors: D.3.1 [Programming Languages|: Formal Definitions and
Theory—=Semantics; D.3.4 [Programming Languages]|: Processors—Compilers; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs— Object-oriented constructs

General Terms: Languages, Verification
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1. INTRODUCTION

There is a large body of literature on formal models of Java-like languages, the
virtual machine and bytecode verification, and compilation. However, each of these
models is designed to treat certain features of Java in depth, while ignoring other
features completely (see below for one exception). The main result of our work is
the first unified model of a Java-like source language, virtual machine, and com-
piler, with the following salient features: it is based on operational semantics, it is
executable, it fits into the confines of a journal article, and all proofs are machine-
checked (in Isabelle/HOL [Nipkow et al. 2002]). This is considerably more than
the sum of its parts. A tractable formal model is the result of a careful balance of
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features on each level and of the interaction between the different levels (here: the
source and target language). That is, integrating different formal models is just as
much of a challenge as designing the individual models.

In addition to the unified model, there are also a number of specific advances of
the state of the art: a big and small step semantics together with an equivalence
proof (previously only one or the other had been used), a formalisation of the
“definite assignment” analysis of local variables, and a compiler correctness proof
covering exceptions. We discuss these issues in detail in the respective sections.

It must be emphasised that our work is complementary to the detailed analysis
of particular language features. In the end, a synthesis of our unified (but in many
places simplified) model and the more detailed (but specialised) models should
emerge. And because of the unavoidable size of the resulting model, we believe
that some machine-checked analysis, ideally with a theorem prover, is necessary
to guarantee the overall consistency of the model—in particular when faced with
changes. With each change to a model of that size, a purely textual definition
becomes less and less reliable: in the absence of mechanical consistency checks,
changes in one part of the model will sooner or later have unexpected side effects
in other parts. This is where formal verification and the ability to re-run proofs
really pays off. But even without formal proofs, mere type checking is already
tremendously beneficial. Hence this paper should also be viewed as an attempt
to combine the rigour of a formal machine-checked meta-language with standard
(largely mathematical) notation. More on this issue in §1.2.

The paper is subdivided into 4 parts: the source language (§2), the virtual ma-
chine (§3), the bytecode verifier (§4), and the compiler (§5).

We discuss related work separately at the end of each section because most papers
deal with a specific language layer. The exception is the book by Stéark et al. [2001],
who treat almost all of Java and the virtual machine. This is a very impressive piece
of work, but quite different from ours: it is based on Abstract State Machines rather
than standard operational semantics, and the proofs are not machine-checked. It
should be noted that the literature on formal models of Java and the JVM is
already so large that it gave rise to three survey-like publications [Alves-Foss 1999;
Hartel and Moreau 2001; Nipkow 2003a]. Hence our discussion of related work is
necessarily restricted to those papers with a very direct connection to ours.

As a final word of warning we must emphasize that the core of the paper is
intentionally detailed and technical: its very aim is to demonstrate the state of the
art in machine-checked language definitions.

1.1 Basic Notation — The Meta-Language

Our meta-language HOL conforms largely to everyday mathematical notation. This
section introduces further non-standard notation and in particular a few basic data
types with their primitive operations.

Types The basic types of truth values, natural numbers and integers are called
bool, nat, and int. The space of total functions is denoted by =-. Type variables
are written ‘a, 'b, etc. The notation ¢::7 means that HOL term ¢ has HOL type 7.

Pairs come with the two projection functions fst :: ‘a x ‘b = ’a and snd :: 'a
x 'b = 'b. We identify tuples with pairs nested to the right: (a, b, ¢) is identical
to (a, (b, ¢)) and ‘a x ‘b x 'c is identical to ‘a x (b x ‘c).
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Sets (type ‘a set) follow the usual mathematical convention. Intervals are written
as follows: {m..<n} means {i | m < i < n} and {m..n} means {i | m < i < n}.
If m is 0, it can be dropped.

Lists (type 'a list) come with the empty list [], the infix constructor -, the infix @
that appends two lists, and the conversion function set from lists to sets. Variable
names ending in “s” usually stand for lists, |zs| is the length of xs, and zs,), where
n:nat, is the nth-element of zs (starting with 0). The notation [¢..<j] with é::nat
and j::nat stands for the list [i, ..., j—1]. distinct xs means that the elements of
xs are all distinct. The standard functions map and filter are also available.

datatype 'a option = None | Some 'a

adjoins a new element None to a type ‘a. For succinctness we write | a] instead of
Some a. The underspecified inverse the of Some satisfies the |z] = .

Function update is written f(z := y) where f :: ‘a = 'b, x :: ‘a and y :: 'b.

Partial functions are modelled as functions of type ‘a = b option, where None
represents undefinedness and f = = |y] means z is mapped to y. We define dom m
= {a| m a # None}. Instead of ‘a = b option we write 'a — ’b, call such functions
maps, and abbreviate f(z:=|y]) to f(z — y). The latter notation extends to lists:
f(z1, - zm] [~] [y1,- - -y Yn]) means f(z1—y1)...(x;—y;), where 4 is the minimum
of m and n. The notation works for arbitrary list expressions on both sides of [—],
not just enumerations. Multiple updates like f(z+—y)(zs[—]ys) can be written as
f(z — y, zs [—] ys). The map Az. None is written empty, and empty(...), where
... are updates, abbreviates to [...]. For example, empty(z—y, zs[—]ys) becomes
[z =y, as [—] ys].

Overwriting map my with mo is written m; ++ mo and means Ax. case my = of
None = my z | |y] = |y].

Function map-of turns an association list, i.e. list of pairs, into a map:

map-of [] = empty
map-of (p-ps) = map-of ps(fst p — snd p)

Note that [ A1; ...; 4, ] = A abbreviates 4; = (... = (4, = A4)...).
In lemmas we often write “If Ay and ... and A, then A” instead. Displayed

implications are frequently printed as inference rules:
Ay Ay As
A

1.2 Presentation Issues

How are the formulae you see related to the formal Isabelle text? Our motto is
What you see is what we proved!

In many papers this is not the case. For example, the main definition by Nipkow
[1991] and the main theorem, Theorem 1, by Flatt et al. [1999] are blatantly wrong
(the latter misses the case that e might diverge). In order to avoid this problem,
Isabelle theories can be augmented with ETEX text which may contain references to
Isabelle theorems (by name — see chapter 4 of the book by Nipkow et al. [2002]).
When this HTEX text is processed by Isabelle, it expands these references into the
IXTEX text for the proposition of the theorem. Using this mechanism, the text for
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most of the definitions and theorems in this paper is automatically generated. We
emphasize that the ITEX presentation is quite close to the original Isabelle theories
viewed with the help of the Proof General interface [Aspinall 2000] because the
latter supports mathematical symbols. Only a few niceties like inference rules are
TEX specific.

It is conceivable to go one step further and even generate proof text automatically
from the theories. However, although most of our proofs are in a quasi-readable
form of structured stylized mathematics [Wenzel 2002; Nipkow 2003b], it appears
beyond the state of the art to turn these into concise journal-style proofs automat-
ically.

2. JINJA

Our dialect of Java is called Jinja (because Jinja is not Java). Although Jinja is
a typed language, we begin its description with the operational semantics which is
independent of the type system. First we introduce a big step or evaluation seman-
tics (§2.2), then a small step or reduction semantics (§2.3). The big step semantics
will be used in the compiler proof, the small step semantics in the type safety proof.
Both semantics are defensive: rules only apply if everything “fits together”. For
example, variable lookup requires that the variable has been initialised. This is
a prerequisite for the type safety proof, which shows that reduction of well-typed
expressions does not get stuck. In §2.4 certain minimal well-formedness conditions
for programs are defined. They imply (§2.5) that the two semantics are equivalent
for terminating executions. Then we introduce a type system (§2.6) and a “definite
assignment” analysis (§2.7) for expressions and complete the set of well-formedness
conditions for Jinja programs (§2.8). Finally we show type safety (§2.9).

2.1 Abstract Syntax

2.1.1 Names. In the sequel we use the following (HOL) variable conventions: V
is a (Jinja) variable name, F' a field name, M a method name, C a class name, e
an expression, v a value, T a type, and P a program.

For readability only we have introduced three (HOL) types for Jinja identifiers:
cname (class names), vname (variable names), and mname (method names). All
three are merely synonyms for type string.

2.1.2  Values and Ezxpressions. A Jinja value can be

—a boolean Bool b, where b :: bool, or

—an integer Intg i, where i :: int, or

—a reference Addr a, where a :: addr, or

—the null reference Null, or

—the dummy value Unit.

Jinja is an imperative but an expression-based language where statements are ex-
pressions that evaluate to Unit. To make things executable, type addr is actually

a synonym for type nat (as opposed to leaving it unspecified).
The following expressions (of HOL type ezpr) are supported by Jinja:
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—creation of new object: new C

—casting: Cast C'e

—Tliteral value: Val v

—binary operation: e; <bop> es (where bop is one of + or =)
—variable access Var V and variable assignment V := e

—field access e. '{D} and field assignment e;.F{D} := ey
(where D is the class where F' is declared)

—method call: e.M (es)

—block with locally declared variable: {V:T'; e}

—sequential composition: eq; eo

—conditional: if (e) e; else ez (do not confuse with HOL’s if b then x else y)
—while loop: while (e) e’

—exception throwing throw e and catching try e; catch (C V) eg

The constructors Val and Var are needed in our meta-language to disambiguate
the syntax. There is no return statement because everything is an expression and
returns a value.

Note that the annotation {D} in field access and assignment is not part of the
input language but is something that a preprocessor, e.g. the type checking phase
of a compiler, must add. We come back to this point in §2.6.

To ease notation we introduce some abbreviations:

true = Val(Bool True) false = Val(Bool False)
addr « = Val(Addr a) null = Val Null
unit = Val Unit

Jinja supports only the two binary operators = and + to keep things simple. Their
evaluation is defined via a function binop that takes an operator and two values
and returns an optional value (to deal with type mismatches):

binop (=, vy, va) | Bool (v1 = va)]
binop (+, Intg i1, Intg is) = |Intg (i1 + i2)]
binop (bop, vi, va) = None

Addition only yields a value if both arguments are integers. We could also insist on
similar compatibility checks for the equality test, but that leads to excessive case
distinctions that we want to avoid for reasons of presentation.

2.1.3 Programs. The abstract syntax of programs is given by the type defini-
tions in Fig. 1, where ty is the HOL type of Jinja types. A program is a list of
class declarations. A class declaration consists of the name of the class and the
class itself. A class consists of the name of its direct superclass, a list of field
declarations and a list of method declarations. A field declaration is a pair of a
field name and its type. A method declaration consists of the method name, the
parameter types, the result type, and the method body.

The only unusual thing here is the parameterisation of these types by 'm, the
type of the method body. The reason is that we want to use the program structure
not just for Jinja but also for virtual machine programs. All we need to do is to slot
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types 'm prog 'm cdecl list

'm cdecl = cname X 'm class

'm class = cname X fdecl list x 'm mdecl list
fdecl = wvname X ty

'm mdecl = mname X ty list X ty X 'm

J-mb = wvname list X expr

J-prog = J-mb prog

Fig. 1. Abstract program syntax

in the right kind of method body: a Jinja method body J-mb is a pair of the formal
parameter names and the expression, a Jinja program J-prog a program with Jinja
method bodies. Note that parameter names cannot be part of the generic syntax
because there are no parameter names on the virtual machine level.

This generic program syntax is an important abstraction that will also come
in handy during compilation. More concrete representations, e.g. concrete source
language syntax or Java’s class file format, are orthogonal to our work and can be
added separately.

2.1.4  Eaxtracting Declaration Information. Most of the time the exact represen-
tation of programs is irrelevant because we work in terms of a few functions and
predicates for analysing and accessing the declarations in a program:

—class P C is the class associated with C in P.
—1is-class P C means class C is defined in P.
—P D <* C means D is a subclass of C. The relation is transitive and reflexive.

—P F Csees M:Ts— T = mb in D means that in P, scanning the class hierarchy
upwards starting from C, a method M is visible in class D (taking overriding into
account). Its argument types are Ts (a type list), result type is 7T, and body is
mb. If P is a Jinja program, mb is a pair (pns, e) of formal parameter list pns
and expression e.

—P + C sees F:T in D means that in P from class C a field F of type T is
visible in class D.

—P F C has F:T in D means that in P a (not necessarily proper) superclass D
of C has a field F of type T.

Before we show the definition of these predicates we give an example (in an
imaginary concrete syntax) that should clarify the concepts:

class B extends A {field F:TB
method M:TBs->T1

class C extends B {field F:TC
method M:TCs->T2 = mC}

We have P + C sees F:TC in C but not P = C sees F:TB in B because the
declaration in C' hides the one in B. In contrast, we have both P = C has F:TC in
C and P+ C has F:TB in B because has is independent of visibility.
Analogously we have P - B sees M: TBs—T1 = mB in B and P + C sees M:
TCs—Ts = mC in C, but not P+ C sees M: TBs—T1 = mB in B. The second

mB}
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declaration of M overrides the first, no matter what the type of M in the two
declarations is.

This is method overriding in its purest form but differs from Java, where methods
can also be overloaded, which means that multiple declarations of M can be visible
simultaneously, provided they are distinguished by their argument types. We have
formalised overloading elsewhere [Oheimb and Nipkow 1999] but have not included
it in Jinja. It complicates matters without adding a significant new aspect: one has
to annotate method calls with the static type of the actual parameter list, just as in
field access. This mixture of static type (for the parameter list) and dynamic type
(of the object at run time) can make programs with overloading hard to understand.

We will now show how the above functions are defined. The first two are trivial:
class = map-of and is-class P C' = class P C # None.

For the remaining functions it is important to note that we do not differentiate
between user defined classes and system classes. That is, any proper program will
need to contain a class Object. Since any class has a superclass entry, so has Object.
Therefore class Object is treated specially: traversal of the class hierarchy stops
there and the dummy superclass entry is ignored.

The subclass relation <* is defined as the reflexive transitive closure of the direct
subclass relation <! defined by

class P C = | (D, fs, ms)] C # Object
P C=<'D

The information about fields in a class hierarchy is collected by a predicate
P & C has-fields FDTs where FDTs :: ((vname x cname) x ty) list. That is,
each tuple ((F, D), T) in FDTs represents a field declaration F:T in a superclass
D of C, and the list follows the class hierarchy, i.e. the fields of C itself come first
in the list. The predicate is defined inductively:

class P C = | (D, fs, ms)] C # Object P+ D has-fields FDT's
P+ C has-fields map (A\(F', T). ((F, C), T)) fs @ FDTs

class P Object = | (D, fs, ms)]
P = Object has-fields map (\(F, T). ((F, Object), T)) fs

At the moment we do not rule out class Object having fields. In our example above,
assuming that A is in fact Object, and assuming that Object does not have fields,
we obtain P + C has-fields [((F, C), TC), ((F, B), TB)].

From the has-fields relation we can define has and sees directly:

Pt Chas F:Tin D =3FDTs. Pt C has-fields FDTs A map-of FDTs (F, D) = | T|

P Csees F:Tin D =
IFDTs. P & C has-fields FDTs N
map-of (map (\((F, D), T). (F, D, T)) FDTs) F = [(D, T)]|
The relation sees for methods can be defined analogously via a relation that
traverses the class hierarchy and collects all method declaration information. We
omit the details.

2.2 Big Step Semantics

2.2.1 State. The type of states during expression evaluation is defined in Fig. 2.
A state is a pair of a heap and a store (locals). A store is a map from variable
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types state = heap X locals obj = cname X fields
locals = wvname — wval fields = wname X cname — val
heap = addr — obj

Fig. 2. The type of Jinja program states

names to values. A heap is a map from addresses to objects. An object is a pair of
a class name and a field table, and a field table is a map from pairs (F, D) (where
D is the class where F is declared) to values. It is essential to include D because
an object may have multiple fields of the same name, all of them visible.

The naming convention is that h is a heap, [ is a store (the local variables), and
s a state. The projection functions hp and lcl are synonyms for fst and snd.

When a new object is allocated on the heap, its fields are initialised with the
default value determined by their type:

init-fields :: ((vname X cname) x ty) list = fields

wnit-fields = map-of o map (A(F, T). (F, default-val T))

The definition of the default value is irrelevant for our purposes. It suffices to know
that the default value is of the right type and that for references (types Class and
NT) it is Null.

2.2.2  Fwvaluation. The evaluation judgement is of the form P F (e,s) = (e’,s'),
where e and s are the initial expression and state, and e’ and s’ the final expression
and state. We then say that e evaluates to ¢’

The rules will be such that final expressions are always values (Val) or
exceptions (throw), i.e. final expressions are completely evaluated.

We will discuss the evaluation rules in an incremental fashion: first normal evalua-
tion only, exceptional behaviour afterwards.

2.2.3 Normal FEwvaluation. Normal evaluation means that we are defining an
exception-free language. In particular, all final expressions will be values. The
complete set of rules is shown in Fig. 3 and we discuss them in turn.

new C first allocates a new address: function new-Addr (we omit its definition)
returns a “new” address, i.e. new-Addr h = | a] implies h a = None. Then predicate
has-fields (§2.1.4) computes the list of all field declarations in and above C, and
init-fields (§2.2.1) creates the default field table.

There are two rules for Cast C e: if e evaluates to the address of an object of
a subclass of C' or to null, the cast succeeds, in the latter case because the null
reference is in every class.

The rules for Val, Var and assignment are self-explanatory.

Field access e. F{D} evaluates e to an address, looks up the object at the address,
indexes its field table with (F,D), and evaluates to the value found in the field table.
Note that field lookup follows a static binding discipline: the dynamic class C is
ignored and the annotation D is used instead. Later on, well-typedness will require
D to be the first class where F' is declared when we start looking from the static
class of e up the class hierarchy.
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new-Addr h = |a] P  C has-fields FDTs h'! = h(a — (C, init-fields FDTs))
P+ (new C,(h, 1)) = (addr a,(h’, 1))

P+ (e,s0) = (addr a,(h, 1)) ha= (D, fs)] P+-D=x*C
P+ (Cast C e,sg) = (addr a,(h, 1))

P+ (e,s0) = (null,s1)
P+ (Cast C e,sg) = (null,s1)

P+ (Val v,s) = (Val v,s)
IV =|v]
P+ (Var V,(h, 1)) = (Val v,(h, 1))

P+ (e,s0) = (Val v,(h, 1)) U'=1V )
P+ (V :=e,s0) = (unit,(h, 1))

P+ (e,s0) = (addr a,(h, 1)) ha=|(C, fs)] fs (F, D) = |v]
P (e.F{D},s0) = (Val v,(h, 1))

P+ (e1,s0) = (addr a,s1) P (e2,s1) = (Val v,(h2, l2))
ha a = [(C, fs)] fs' = fs((F, D) — v) ho! = ha(a — (C, fsl))
P (e1.F{D} := e2,50) = (unit,(ha’, l2))

P+ (e1,s0) = (Val v1,s1) P+ (e2,s1) = (Val va,s2) binop (bop, vi, v2) = |v]

P+ (e1 <bop> e2,s0) = (Val v,s3)

P+ (e,s0) = (addr a,s1) P+ (ps,s1) [=] (map Val vs,(ha, l2))
ha a = |(C, fs)] P+ Csees M: Ts—T = (pns, body) in D
|vs| = |pns| lo’ = [this — Addr a, pns [—] vs] P (body,(h2, l2")) = (e',(hs, l3))

P+ (e.M(ps),s0) = (e,(h3, l2))

P+ <60,(h0, lo(V = None))) = <617(h1, l1)>
P+ <{V:T; E()},(ho, lo)) = (617(h1, ll(V = lo V)))

P (eo,s0) = (Val v,s1) P F (e1,51) = (e2,s2)
P (eo; e1,50) = (e2,s2)

P (e,s0) = (true,s1) P {e1,51) = {e,52)
P I (if (e) e1 else e2,50) = (e’,s2)

P+ (e,s0) = (false,s1) P {e2,51) = (e’,s2)
P I (if (e) e1 else e2,50) = (e’,s2)

P+ (e,s0) = (false,s1)
P+ (while (e) ¢,s0) = (unit,s1)
(

P+ (e,s0) = (true,s1) P F {(c,s1) = (Val v1,s2) P+ (while (e) ¢,s2) = (e3,s3)

P I (while (e) ¢,s0) = (e3,s3)

P I (e,s0) = (Val v,s1) P {(es,s1) [=] (es',s2)

P+ <[75> [:ﬂ <[]75> P+ <€~ES,SO> [é} (Val ’U'ES/,SQ>

Fig. 3. Normal evaluation of expressions
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Field assignment e;.F'{D} := ey evaluates e; to an address and es to a value,
updates the object at the address with the value (using the index (F,D)), and
evaluates to unit (just like assignment to local variables).

Why does assignment not evaluate to the value of the rhs, like in Java? Because
then the conditional if (e) Vi := e; else Vo := ey would not evaluate to unit
but to the value of e; or es. Thus the type system (to be definend later) would
require e; and ey to have compatible types, which in many cases they wouldn’t,
thus forcing the programmer to write something like if (e) (V1 := ey; unit) else
(Vg 1= es; unit).

Binary operations are evaluated from left to right (for binop see §2.1.2).

The lengthiest rule is the one for method call. Its reading is easy: evaluate e to
an address a and the parameter list ps to a list of values vs!, look up the class C of
the object in the heap at a, look up the parameter names pns and body body of the
method M visible from C| and evaluate the body in a store that maps this to Addr
a and the formal parameter names to the actual parameter values (having made
sure that vs and pns have the same length). The final store is the one obtained
from the evaluation of the parameters — the one obtained from the evaluation of
body is discarded. This rule reflects a well-formedness condition imposed later on:
there are no global variables in Jinja (just as in Java, but contrary to, say, C++),
i.e. a method body should only refer to this and its parameters.

In Jinja, blocks with local variables, sequential composition, conditional and
while-loop are expressions too, in contrast to Java, where they are commands and
do not return a value. In a block, the expression is evaluated in the context of a
store where the local variable has been removed, i.e. set to None. Afterwards the
original value of the variable in the initial store is restored. Sequential composition
discards the value of the first expression. Similarly, while-loops discard the value
of their body and, upon termination, return unit.

The rules for [=], the evaluation of expression lists (needed for method call),
define that lists are evaluated from left to right. This concludes the complete
semantics of the exception-free fragment of Jinja.

2.2.4  Exceptions. The rules above assume that during evaluation everything fits
together. If it does not, the semantics gets stuck, i.e. there is no final value. For
example, evaluation of (Var V, (h,l)) only succeeds if V € dom [ Later on (§2.7),
a static analysis (“definite assignment”) will identify expressions where V' € dom [
always holds. Thus we do not need a rule for the situation where V ¢ dom [. In
contrast, many exceptional situations arise because of null references which we deal
with by raising an exception. That is, the expression does not evaluate to a normal
value but to an exception throw(addr a) where a is the address of some object, the
exception object.

There are both system and user exceptions. User exceptions can refer to arbitrary
objects. System exceptions refer to an object in one of the system exception classes:

sys-zepts = {NullPointer, ClassCast, OutOfMemory}

L[=] is evaluation extended to lists of expressions. Saying that the result is of the form map Val vs
is a declarative way of ensuring that it is a list of values and of obtaining the actual value list vs
(as opposed to an expression list).
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new-Addr h = None
P+ (new C,(h, 1)) = (THROW OutOfMemory,(h, 1))
P+ (e,s0) = (addr a,(h, 1)) ha= (D, fs)] -P+-D=X*C
P I~ (Cast C e,s0) = (THROW ClassCast,(h, 1))
P+ (e,s0) = (null,s1)
P+ (e.F{D},s0) = (THROW NullPointer,s1)
P+ (e1,s0) = (null,s1) P (e2,51) = (Val v,s2)
Pt (e1.F{D} := e2,s0) = (THROW NullPointer,s2)

P+ (e,s0) = (null,s1) P+ (ps,s1) [=] (map Val vs,s2)
P+ (e.M(ps),s0) = (THROW NullPointer,s2)
P+ (e,s0) = (addr a,s1) P I (e,s0) = (null,s1)
P I (throw e,sg) = (Throw a,si) P+ (throw e,sg) = (THROW NullPointer,s1)

P+ (e1,s0) = (Val v1,81)
P I (try e1 catch (C V) e2,s0) = (Val vy,s1)
P+ (e1,s0) = (Throw a,(h1, 11))
h1 a = |(D, fs)] PrD=*C P {ea,(h1, 11(V — Addr a))) = (e2’,(h2, 12))
P I (try ey catch (C V) ea,s0) = (e2’,(h2, l2(V =11 V)))
P+ {e1,50) = (Throw a,(h1, [1)) h1 a = |[(D, fs)] -PFDZX*C
P I (try e catch (C V) e2,s0) = (Throw a,(h1, [1))

Fig. 4. Throwing and catching exceptions

Their names speak for themselves. Since system exception objects do not carry
any information in addition to their class name, we can simplify their treatment by
pre-allocating one object for each system exception class. Thus a few addresses are
reserved for pre-allocated system exception objects. This is modelled by a function
addr-of-sys-zcpt 1 cname = addr whose precise definition is not important. To
ease notation we introduce some abbreviations:

Throw a = throw(addr a)
THROW C = Throw(addr-of-sys-zcpt C)

2.2.5  FExceptional Evaluation. The basic rules for throwing and catching excep-
tions are shown in Fig. 4. In the following situations system exceptions are thrown:
if there is no more free storage, if a cast fails, or if the object reference in a field
access, field update, or method call is null. The throw construct may throw any
expression of class type, which is a simplification of Java’s exceptions. Throwing
null leads to a NullPointer exception.

Note that we have maintained Java’s eager evaluation scheme of evaluating all
subterms before throwing any system exception. This permits the simple compila-
tion strategy where the values of the subterms are first put on the stack unchecked
and the check is performed at the end by the machine instruction, e.g. field access,
accessing the object reference in question.

Thrown exceptions can be caught using the construct try e; catch (C V) eq. If
e1 evaluates to a value, the whole expression evaluates to that value. If e; evaluates
to an exception Throw a such that a refers to an object of a subclass of C, V is set
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P {e,s0) = (throw e’;s1) P {e,50) = (throw e’,s1)
P |- (Cast C e,sp) = (throw e’,s1) PF{(V:=¢es0) = (throw e’,s1)
P - (e,s0) = (throw e’,s1) P+ (e1,s0) = (throw e’,s1)

P I~ (e.F{D},s0) = (throw e;s1) Pt (e1.F{D} := e2,s0) = (throw e’,s1)
P+ {e1,50) = (Val v,s1) P+ (e2,s1) = (throw e’,s2)
P - (e1.F{D} := e2,s0) = (throw e’,s2)

P I (e1,50) = (throw e,s1)

P+ (e1 <bop> e2,s0) = (throw e,s1)

P+ (e1,s0) = (Val v1,s1) P I (e2,51) = (throw e,s2)

P+ (e1 <bop> e2,s0) = (throw e,s2)
P I (e,s0) = (throw e’,51)
P+ (e.M(ps),s0) = (throw e’;s1)

P+ (e,s0) = (Val v,s1) P I~ (es,s1) [=] (map Val vs @ (throw ex-es’),s2)
P+ (e.M(es),s0) = (throw ez,s2)

P I (eg,50) = (throw e,sy) P+ (e,s0) = (throw e’,s1)
P+ (eo; e1,s0) = (throw e,sy) P+ (if (e) e1 else e2,50) = (throw e’,s1)

P I (e,s0) = (throw e’,s1) P+ (e,s0) = (true,si) P+ {c,51) = (throw e’,s2)
P - (while (e) c¢,s0) = (throw e’,s1) P - (while (e) c¢,s0) = (throw e’,s2)

P+ (e,s0) = (throw e’,s1) P+ (e,s0) = (throw e’,s1)
P - (throw e,sq) = (throw e’,s1) P+ (e-es,s0) [=] (throw e’- es,s1)

Fig. 5. Exception propagation

to Addr a and ey is evaluated; otherwise Throw a is the result of the evaluation.

Finally, exceptions must be propagated. That is, if the evaluation of a certain
subexpression throws an exception, the evaluation of the whole expression has to
throw that exception. The exception propagation rules are straightforward and
shown in Fig. 5. This concludes the exposition of the evaluation rules.

A compact representation of the exception propagation rules can be achieved
by introducing the notion of a context C, (essentially a grammar for positions in
expressions where exceptions propagate to the top) and by giving one rule

P+ (e,s) = (throw e’,s’)
P+ (Czle],s) = (throw e',s’)

We prefer not to formalize these additional notions and stay within a fixed basic
framework of ordinary expressions.

2.2.6 Final Ezpressions. Now that we have the complete set of rules we can
show that evaluation always produces a final expression:

final e = (3v. e = Val v) V (Ja. e = Throw a)
LEMMA 2.1. If P F (e,s) = (e',s") then final ¢’

The proof is by induction on the evaluation relation =-. Since the latter is defined
simultaneously with the evaluation relation [=] for expression lists, we need to
prove a proposition about [=] simultaneously with Lemma 2.1. This will also be
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the common proof pattern in all other inductive proofs about =. In most cases
the statement about [=] is a lifted version of the one about =. In the above case
one might expect something like P F (es,s) [=] (es’,s’) = Ve'€set es’. final €.
However, this is wrong: due to exceptions, evaluation may stop before the end of
the list. A final expression list is a list of values, possibly followed by a throw and
some further expressions:

finals es = (Jvs. es = map Val vs) V (Jvs a es’. es = map Val vs @ (Throw a- es’))

and Lemma 2.1 for lists is simply “If P b (es,s) [=] (es’,s") then finals es’.”
It is equally straightforward to prove that final expressions evaluate to themselves:

LEMMA 2.2. If final e then P F (e,s) = (e,s).

Of course an analogous lemma holds for expression lists, but we have chosen not
to show it. We will follow this practice whenever the list version of a theorem is
obvious. In fact, one could dispose of expressions lists altogether by restricting Jinja
methods to a single parameter. However, this is precisely the kind of simplification
we do not want to make, because it would give the wrong impression that including
expression lists could be a significant burden.

2.3 Small Step Semantics

Because of its simplicity, a big step semantics has several drawbacks. For example,
it cannot accommodate parallelism, a potentially desirable extension of Jinja. The
reason is that = cannot talk about the intermediate states during evaluation. For
the same reason the type safety proof in §2.9 needs a finer grained semantics.
Otherwise we cannot prove that type-correct expressions do not get stuck during
evaluation because the big step semantics does not distinguish between divergence
(of nonterminating expressions) and deadlock (of ill-typed expressions). Thus we
now move over to an equivalent small step semantics.

The judgement for the small step semantics is P F (e,s) — (e’,s") and describes
a single micro-step in the reduction of e towards its final value. We say that e
reduces to ¢’ (in one step). Below we will compose sequences of such single steps
(e1,81) — (ea,82) ... — (en,sn) to reduce an expression completely.

As for the big step semantics we can define normal and exceptional reductions
separately. We begin with normal reductions. The rules come in two flavours:
those that reduce a subexpression of an expression and those that reduce the whole
expression. The former have no counterpart in the big step semantics as they are
handled implicitly in the premises of the big step rules.

2.3.1 Subexpression Reduction. These rules essentially describe in which order
subexpressions are evaluated. Therefore most of them follow a common pattern:
P (es) — (s
Pr{c...e...,s) = {(c...e...,s

where ¢ is a constructor and e and e’ are meta-variables. The other subexpressions
of ¢ may be more complex to indicate, for example, which of them must be values
already, thus expressing the order of reduction. The rules for Jinja subexpression
reduction are shown in Fig. 6. The initial ones follow the pattern above exactly. For
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P (es) — (e,s") P (es) — (e,s")
P+ (Cast C e,s) — (Cast C e',s') PE(V:=¢s) — (V:=¢s)
P (e,s) — (e,;s") P (e,s) — (e,s")
P (e.F{D},s) — (e'.F{D},s" P - (e.F{D} := e2,8) — (e'.F{D} := e3,s')
P (e,s) — (e,s") P (e,s) — (e,s")

P (Val v.F{D} :=e,8) — (Val v.F{D} :=¢;s") P I (e <bop> e2,5) — (e’ <bop> ea,s’)
PF {es) — (s
P F (Val vy <bop> e,s) — (Val v1 <bop> e’,s”)

P I (e,(h, I(V := None))) — {(e/,(k/, I)) ! V = None - assigned V e

P {V:Ts e}y(h, D) — ({V:T5 1 (R, U(V =1 V)
P I (e,(h, I(V := None))) — (e/,(k/, I')) 'V =|v] - assigned V e
P ({V:T; e}, (h, 1)) —» {V:T; V:=Val v; e'},(h, I'(V =1 V)))

P {e,(h, V = 0))) — (e,(h, ') v =[]

P {V:T; V:=val v; e},(h, 1)) — {V:T; V:=val v'; &'},(h/, I'(V := 1 V)))

P+ (e,s) — (e,s") P+ (es,s) [—] (es’,s")
P (e.M(es),s) — (e'.M(es),s’) P I (Val v.M(es),s) — (Val v.M(es’),s")
P (e,s) — (/) Pt (e;s) — (e;s")
P {e; ea,s) — {e'; ea,s’) P - (if (e) e1 else ea,s) — (if (e’) e1 else ea,s”)
PF {es) — (s P I (es,s) [—] {(es’,s")
PF (e-es,s) [—] (e es,s) P I (Val v-es,s) [—] (Val v-es’,s’)

Fig. 6. Subexpression reduction

example, the rules for field assignment express that the left-hand side is evaluated
before the right-hand side.

The rules for blocks are more complicated. In a block { V:T'; e} we keep reducing
e in a store where V is undefined (None), restoring the original binding of V' after
each step. Once the store after the reduction step binds V to a value v, this binding
is remembered by adding an assignment in front of the reduced expression, yielding
{V:T; V :=Val v; e}. The final rule reduces such blocks. This additional rule
is necessary because {V:T; V := Val v; e} must not be reduced as before, by
reducing all of V := Val v; e to e (thus losing the binding for V'), but by reducing
e directly. To this end we have introduced the predicate

assigned Ve =3Jve'. e =V :=Val v; €
and added its negation as a precondition to the initial two reduction rules.

Note that we cannot treat local variables simply by creating “new” wvariables
because we do not know which other variables exist in the context: dom [ does not
contain all of them because variables need not be initialized upon creation.

To reduce a method call, the object expression is reduced until it has become an
address, and then the parameters are reduced. The relation [—] is the extension
of — to expression lists, which are reduced from left to right, and each element is
reduced until it has become a value.
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new-Addr h = |a] P+ C has-fields FDT's
P+ (new C,(h, 1)) — (addr a,(h(a — (C, init-fields FDTs)), 1))

hp s a = |(D, fs)] P+-D=*C
P+ (Cast C (addr a),s) — (addr a,s)

P I (Cast C null,s) — (null,s)

fel s V = o) P+ (V= Val v,(h, I it (hy U(V
PE <Var V,S> _ (Val ’U,S) < = Va 1},( ’ )) - (’LL'I’LZ 7( ’ ( = 1}))>
binop (bop, v1, v2) = [v] hp s a = [(C, fs)] fs (F, D) = |v]
P I (Val vi <bop> Val va,s) — (Val v,s) P+ (addr a.F{D},s) — (Val v,s)

ha=1[(C, fs)]
P+ (addr a.F{D} :=Val v,(h, 1)) — (unit,(h(a — (C, fs((F, D) — v))), 1))

hp s a = |(C, fs)]
P Csees M: Ts—T = (pns, body) in D |vs| = |pns| |T's| = |pns|

P+ {addr a.M(map Val vs),s) — (blocks (this-pns, Class D - Ts, Addr a - vs, body),s)
Pt ({V:T; V:=Val v; Val u},s) — (Val u,s) Pt ({V:T; Val u},s) — (Val u,s)

P+ (Val v; e2,s) — (e2,s)
P (if (true) ey else ez,s) — (e1,s) P (if (false) e1 else ea,s) — (e2,s)

P I (while (b) ¢,s) — (if (b) (c¢; while (b) c) else unit,s)

Fig. 7. Expression reductions

2.3.2  Expression Reduction. Once the subexpressions are sufficiently reduced,
we can reduce the whole expression. The rules are shown in Fig. 7. Most of the
rules are fairly intuitive and many resemble their big step counterparts. The only
one that deserves some explanation is the one for method invocation. In order to
avoid explicit stacks we use local variables to hold the values of the parameters.
The required nested block structure is built with the help of the auxiliary function
blocks of type vname list x ty list x wval list X expr = expr:

blocks (V- Vs, T-Ts, v-vs, e) = {V:T; V :=Val v; blocks (Vs, Ts, vs, €)}
blocks ([, I, [, e) = e

Note that we can only get away with this simple rule for method call because
there are no global variables in Java. Otherwise one could unfold a method body
that refers to some global variable into a context that declares a local variable of
the same name, which would essentially amount to dynamic variable binding.

2.3.3  Exceptional Reduction. The rules for exception throwing are shown in
Fig. 8. System exceptions are thrown almost exactly like in the big step semantics.
Expression throw e is reduced by reducing e as long as possible and throwing
NullPointer if necessary. And this is how try e catch (C' V) ey is reduced: First
we must reduce e. If it becomes a value, the whole expression evaluates to that
value. If it becomes a Throw a, there are two possibilities: if a can be caught, the
term reduces to a block with V set to a and body ey, otherwise the exception is
propagated. Exception propagation for all other constructs is shown in Fig. 9.

It should be noted that { V:T; throw e} can in general not be reduced to throw e
because e may refer to the local V which must not escape its scope. Hence e must
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new-Addr h = None
P+ (new C,(h, 1)) — (THROW OutOfMemory,(h, 1))

hp s a = (D, fs)] - PrD=X*C
P+ (Cast C (addr a),s) — (THROW ClassCast,s)
P+ (null.F{D},s) — (THROW NullPointer,s)

P+ (null. F{D} := Val v,s) — (THROW NullPointer,s)
P + {(null.M(map Val vs),s) — (THROW NullPointer,s)
P I (e,s) — (e/,8')

— P + (throw null,s) — (THROW NullPointer,s)
P I (throw e,s) — (throw e’,s’)

P {es) — (€,
P I (try e catch (C V) ea,s) — (try e’ catch (C V) ea,s’)
(

P+ (try Val v catch (C V) e2,s) — (Val v,s)
hp s a = (D, fs)] PrD=x*C
P+ (try Throw a catch (C' V) e2,s) — ({V:Class C; V := addr a; e2},s)
hp s a = (D, fs)] -PFD=<*C
P | (try Throw a catch (C V) e2,s) — (Throw a,s)

Fig. 8. Exceptional expression reduction

Cast C (throw e),s) — (throw e,s)

V := throw e,s) — (throw e,s)

throw e.F{D},s) — (throw e,s)

throw e.F{D} := ea,s) — (throw e,s)
Val v.F{D} := throw e,s) — (throw e,s)

throw e <bop> e2,s) — (throw e,s)

il

F o

F{

il

H{

il

F (Val v1 <bop> throw e,s) — (throw e,s)
F ({V:T; Throw a},s) — (Throw a,s)

F {({V:T; V :=Val v; Throw a},s) — (Throw a,s)

F (throw e.M(es),s) — (throw e,s)

F (Val v.M(map Val vs @ (throw e-es’)),s) — (throw e,s)
F (throw e; ea,s) — (throw e,s)

F (if (throw e) e; else e2,s) — (throw e,s)

F o

throw (throw e),s) — (throw e,s)

Fig. 9. Exception propagation

be reduced to an address first.

2.3.4 The Reflexive Transitive Closure. If we write P = (e1,51) —* (en,$p) this
means that there is a sequence of reductions P + (e1,51) — (e2,82), P F (ea,s2)
— (es,83) ..., and similarly for [—] and [—]*.
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wf-prog :: 'm wf-mdecl-test = 'm prog = bool
wf-prog wf-md P = wf-syscls P N (V¥ c€set P. wf-cdecl wf-md P c) A distinct-fst P

wf-syscls :: 'm prog = bool
wf-syscls P = {Object} U sys-zcpts C set (map fst P)

wf-cdecl :: 'm wf-mdecl-test = 'm prog = 'm cdecl = bool
wf-cdecl wf-md P =
AC, D, fs, ms).

(Vfeset fs. wf-fdecl P f) A distinct-fst fs N (Y m€set ms. wf-mdecl wf-md P C m) A

distinct-fst ms A

(C # Object —>

is-class P D AN = P+ D <* C A

(V(M, Ts, T, m)Eset ms.

VD' Ts'" T' m'.
Pt Dsees M: Ts'=T'=m’inD' — P+ Ts' [<] Ts NP+ T < T')

wf-fdecl :: 'm prog = fdecl = bool
wf-fdecl P = \(F, T). is-type P T

wf-mdecl :: 'm wf-mdecl-test = 'm wf-mdecl-test

wf-mdecl wf-md P C =
MM, Ts, T, mb). (V T€set Ts. is-type P T) A is-type P T A wf-md P C (M, Ts, T, mb)

Fig. 10. Generic well-formedness

2.4  Well-formedness

We are now aiming to show that the big and small step semantics are closely
related. For this (and many other proofs) we need to impose various well-formedness
constraints on programs. Some of them are generic, like the constraint that the type
in a field declaration must be a valid type. Others depend on the type of method
bodies. To factor out the latter constraints, the well-formedness test on programs
will be parameterized by a well-formedness test for methods:

types 'm wf-mdecl-test = 'm prog = cname = 'm mdecl = bool

Tests of this type are meant to check if a certain method declaration in a certain
class within a certain program is well-formed.

Declarations are lists of pairs. In order to forbid repeated declarations of the
same name, we introduce the auxiliary predicate distinct-fst which checks that in
a list of pairs all first components are distinct: distinct-fst = distinct o map fst.

The well-formedness predicates are shown in Fig. 10. They employ the following
notions from Jinja’s type system: is-type P T checks if T is a valid Jinja type,
P+ T < T checks if T is a subtype of T', and P - Ts [<] Ts’ if, element by
element, Ts is a subtype of Ts’, all in the context of P. We will only define these
notions formally in §2.6 because their definition is not relevant beforehand.

Let us now look at Fig. 10. A program is ok (= well-formed) iff it contains all
system classes (Object and all system exceptions), all class declarations are ok, and
no class is declared twice. A declaration of a class C is ok iff all field declarations
and all method declarations are ok, no field or method is declared twice, and, if
C # Object, then its superclass D exists, D is not a subclass of C' (to rule out
cycles), and method overriding is contravariant in the argument type and covariant
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in the result type. That is, if C overrides a method declaration visible from D, then
the new declaration must have more specific argument types and a more general
result type. Note that overriding involves only the method name — there is no
overloading.

2.4.1  Weak well-formedness. We will now instantiate wf-prog with a constraint
needed for relating big and small step semantics: method bodies should not refer to
global variables. This requires the notion of the free variables in an expression,
collected by fv :: expr = vname set defined in Fig. 11. A Jinja method declaration is
weakly well-formed iff the following conditions hold: there are as many parameter
types as parameter names, the parameter names are all distinct, this is not among
the parameter names, and the free variables of the body refer only to this and the
parameters names. Formally:

wwf-J-mdecl :: J-mb wf-mdecl-test
wwf-J-mdecl P C =

MM, Ts, T, pns, body).
|Ts| = |pns| A distinct pns A this ¢ set pns A fv body C {this} U set pns

The key requirement is fv body C {this} U set pns: it rules out reference to global
variables. This is necessary to make the big and small step semantics of method
call coincide. In the big step semantics, body is evaluated in a store containing
only this and the parameters. In the small step semantics, this and the parameters
are (indirectly) added to the current store, which would lead to dynamic variable
binding (see §2.3.2) if body contained free variables outside {this} U set pns.

The condition |Ts| = |pns| is necessary because we have separated parameter
names from their types. Normally there is a combined parameter list of pairs (V,
T), just as in field declarations. However, since parameter names do not make
sense on the machine level, but parameter types do, we have separated these two
concepts in our generic type of programs.

A Jinja program is weakly well-formed iff all its method bodies are:

wwf-J-prog = wf-prog wwf-J-mdecl

2.5 Relating Big and Small Step Semantics
Our big and small step semantics are equivalent in the following sense:

THEOREM 2.3. If wwf-J-prog P then
PF (es) = (e,s)iff Pt (e,s) =* (e,s) A final €'.

One half of the only-if-direction of Theorem 2.3 is Lemma 2.1, the other half is

THEOREM 2.4. If wwf-J-prog P and P I (e,s) = (e’,s’) then
P F (es) —=* (e/,s).

PrOOF. The proof is by induction on =. Most cases follow the simple pattern
that we demonstrate for Cast. First we lift the subexpression reduction rules from
— to —*, i.e. we show P (e,s) —* (null,s’y = P F (Cast C e,s) —* (null,s’)
which follows from rule P F (Cast C null,s) — (null,s) with the help of the lemma
Pt (e,s) =* (¢/,sy = P F (Cast Ce,s) —* (Cast C ¢e’,s") which is proved from
rule P  (e,s) — (e/,s') = P F (Cast C e,s) — (Cast C ¢/,s’) by induction on
—*. Now the proposition follows by induction hypothesis.
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o (o ©) = )
fu (Cast Ce) = fve

fv (Val v) = {}
fv (e1 <bop> e2) = fver U fu e
fv (Var V) = {V}
fo(Vi=e)={V}U fve

fo (e.F(DY) = fu'e

fu (e1.F{D} :=e2) = fuer U fv ea

fu (e.M(es)) = fve U fus es

fo{V:T; e} =fve—{V}

fu (e1; e2) = fuer U fu ez

fo (if (b) e else e2) = fu b U fu el U fu e

fv (while (b) e) = fub U fue

fv (throw e) = fv e

fu (try e1 catch (C V) e2) = fuer U (fuea — {V})
fos | = {}

fus (e-es) = fue U fuses

Fig. 11. Free variables

For blocks (and similarly for try-catch), the lifting is more complicated:

[P F (eo,(ho, lo(V := None))) —* (e2,(h2, l2)); final e2]
= P+ ({V:T; eo},(ho, lo)) —* (e2,(h2, l2(V =1y V)))

is proved by induction on —* in the premise. The induction step can be proved via

[P F {e.(h, UV = w))) = (e'(h, 1)); final e']]
= P+ ({V:T; V:=Val v; e}, (h l)) *e(W, U(V =1 V)))

which follows easily from

P (e(h, (V — v))) =* (e, (b, 1)) =
P {{V:T; V:=Val v; e}(h, 1)) =* {V:T; V :=Val (the (I’ V)); e'},(h/, U'(V :=1V)))

which can be proved by induction on —* in the premise.
The most complex case is method call where we have to prove the small step
simulation of the exception-free big step call rule, i.e.
[wwf-J-prog P; P+ (e,s0) —* (addr a,s1); P F {(es,s1) [—=]* (map Val vs,(h2, l2));
ha a = |(C, fs)|; P+ Csees M: Ts—T = (pns, body) in D; |vs| = |pns|;
lo" = [this — Addr a, pns [—] vs]; P+ (body,(h2, l2")) —* (ef,(hs, l3)); final ef]
= P+ (e.M(es),s0) —* (ef,(h3, l2))

It is straightforward to derive P F (e.M(es),s0) —* ((addr a).M(es),s1) —*
((addr a).M (map Val puvs),(ha,l2)) — (blks, (ha,l2)) (where blks abbreviates
blocks (this - pns, Class D - Ts, Addr a- pvs, body)) from the assumptions. From
P F (body,(ha, I2")y —* (ef,(hs, I3)) (1) it follows by the easy lemma

F {e,(h, 1)) =* (e/,(h, I')) = P+ (e,(h, lo ++ 1)) —=* (e',(R', lo ++ 1))

(provable by induction) that P+ (body,(ha, lo(this — Addr a, pns [—] pvs))) —*
(ef ,(hs, la ++ I3)). Now we can transfer the bindings for this and pns from the
store into blocks to obtain

P & (blks,(h2, l2)) —=* (ef,(h3, (l2 ++ I3)(I2|{this} U set pns)))
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where f(g|A) means Aa. if a € A then ¢ a else f a. Finally we prove (lo ++
I3)(I2]{this} U set pns) = Iy (2), which finishes the call case. The proof of (2) is
easy once we know dom I3 C {this} U set pns which in turn follows from (1) using
the lemma

[wwf-J-prog P; P+ {e,(h, 1)) —* (e/,(h/, I"))] = dom I'! C dom I U fve
which in its turn is proved using the lemma

[[wwf-]—prog P; P+ <6,(h, l)> - <8/,(h/, l/)>]] == f’U 8/ g f’U €

O
The other direction of Theorem 2.3

THEOREM 2.5. If wwf-J-prog P and P F (e,s) —* (¢/,s") and final e’ then
P (e,s) = (e,s').

is proved easily by induction on —*: the base case is Lemma 2.2, the induction
step follows directly from

THEOREM 2.6. If wwf-J-prog P and P+ {(e,s) — (e”,s"") and
PE (" sy = (e,s) then P I (e,s) = (¢/,s)).

It is proved by induction on —. Most cases are straightforward, except for method
call, which requires the following three lemmas:

llps| = |Ts|; |ps| = |vs|; P+ (blocks (ps, Ts, vs, €),(h, 1)) = (e’,(h’, I))]
= JU". P+ (e,(h, l(ps [—] vs))) = (e,(h', I"))

[wwf-J-prog P; P+ (e,(h, 1)) = (e,(h/, I")); foe C W] = P F (e,(h, IIy)) = (e/,(b, 'l )
[P {e(h, 1)y = (e, (W, I)); foe={}=1U=1

The notation m|[ 4 means restriction of m to A, i.e. A\z. if x € A then m x else None.
The proofs of these lemmas and the proof of the method call case from them are
reasonably straightforward.

Note that the fact that Theorem 2.6 holds is not just a nice coincidence: this
theorem is trivially implied whenever = and —* coincide.

2.6 Type System

Having concluded the dynamic semantics, we now turn to context conditions, start-
ing with the type system. Jinja types are either primitive (Boolean and Integer),
class types Class C, NT (the type of Null), or Void (the type of Unit). The cor-
responding HOL type is called ty. A reference type is either Class C or NT —
predicate is-refT :: ty = bool tests for reference types.

Types should only refer to classes that exist in the current programm:

is-type P T = case T of Class C = is-class P C | - = True

Function typeof :: heap = wval = ty option computes the type of a value. The
heap argument is necessary because values may contain addresses. The result type
is ty option rather than ty because unallocated addresses do not have a type.

typeof p, Unit = | Void]
typeofp, Null = [NT|
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typeof j, (Bool b) = | Boolean

typeof j, (Intg i) = | Integer |
typeof j, (Addr a) = (case h a of None = None | |(C, fs)] = |Class C])

If we want to rule out addresses in values, we simply supply an empty heap and
define the abbreviation
typeof v = typeof empty v
The subclass relation P - €' <* (' induces a subtype relation P - T < T’
(often called widening) in the obvious manner:
PHC="D

PHT<<T PFE NT < Class C
- = s P+ Class C < Class D

The pointwise extension of < to lists of types is written [<].

The core of the type system is the judgement P,E + e :: T, where F is an
environment, i.e. a map from variables to their types. The complete set of typing
rules is shown in Fig. 12. We only discuss the more interesting ones, starting with
field access and field assignment. Their typing rules do not just enforce that the
types fit together but also that the annotation {D} is correct: {D} must be the
defining class of the field F' visible from the static class of the object.

Now we examine the remaining rules for P,E + e :: T. We only allow up and
down casts: other casts are pointless because they are bound to fail at runtime.
The rules for e; <=» es and if (e) e; else es follow Java (with its conditional
operator ? : rather than its if-else) in requiring that the type of ey is a subtype
of that of ey or conversely. Loops are of type Void because they evaluate to unit.
Exceptions (throw) are of type Void, as in Java. They could also be polymorphic,
but that would complicate the type system. The rule for try e; catch (C V) e
follows Java (where e; and es must be statements) in requiring that e; and es have
the same type.

The extension of :: to lists is denoted by [::].

Although the rules for P,E F e :: T can be viewed as computing the annotations
{D} (via the constraint on D), an explicit computation P,E F e ~» ¢’ may be
clearer: the input e is an unannotated expression, the output e’ its annotated
version. Here are two representative rules, one that just copies, and one that adds
an annotation:

PEF e~ €
P,E | Cast C e~ Cast C e’

PEF e~ ¢ P,E\ ¢ :: Class C P+ C sees F:T in D
P,EF e.F ~ e F{D}

While we are at it, we also determine if some Var V really refers to a variable or
to a field. In the latter case it is prefixed by this and annotated:

EV =T E V = None E this = | Class C] PF C sees VT in D
P,EFVar V ~ Var V P,E F Var V ~» Var this.V{D}

Thus ~+ should be viewed as a translation that is part of type checking. As we do
not refer to it again, we need not show the remaining (obvious) rules.
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is-class P C typeof v = | T EV =|T|
P,E + new C :: Class C P,EFvValov = T PEFVar V :: T
P,E+ e :: Class D is-class P C PHC=X*DVPFD=X"C
P,E |- Cast C e :: Class C
PEtF e 2Ty PEF eg:: To PHT1 <ToVPFHTy<T;
P,E - e; <=> eg :: Boolean
P,E - ey :: Integer P,E F eg :: Integer
P,E - e; <+> eg :: Integer
EV =|T] PEFe:=T PHT LT V # this
P,EF V:=e: Void
P,EF e :: Class C P+ C sees F:T in D
PEF eF{D}:: T
P,EF ey :: Class C Pt Csees F:T in D PEVF ey T PHT'<T
P,E & e1.F{D} := ez :: Void
P,E + e :: Class C
P+ Csees M: Ts—T = (pns, body) in D P,EF es[:] Ts' PFTs' [<]Ts
PEtr eM(es) = T

is-type P T PEV —T)Fe:T’ PEF e = Ty PEtF eyt To
PEF{V:T;e} = T P,ElF e1; eg it To
P,E - e :: Boolean
P,EF el Ty P,EtF ey i To PFT1 <ToeVPFT<Ty
PEFT1<Te — T="T PrTy<Ty —T=T
P,Et if (e) ey else ep == T
P.,E + e :: Boolean PEFc:T P,EF e:: Class C
P,E F while (e) ¢ :: Void P.,E |- throw e :: Void

PEFe =T P,E(V + Class C) F e == T is-class P C
P,EF try ey catch (C V) eg =2 T

PEFenT P,Etes[:]Ts
PEF e-es[:] T-Ts

PEE [

Fig. 12. Typing rules

2.7 Definite Assignment

One of Java’s notable features is the check that all variables must be assigned to
before use, called “definite assignment”. Jinja’s rules for definite assignment are
much simpler than Java’s, thus missing certain cases, but still demonstrating the
feature in its full generality. We employ two recursive functions

D :: expr = vname set option = bool A :: expr = vname set option

For a moment ignore the option type. Then D e A is meant to check if evaluation
of e starting from any state where all variables in A are initialized only accesses
initialized variables. The auxiliary function A e computes the set of variables that
have been assigned to after any normal evaluation of e.
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D (new C) A = True

D(Cast Ce) A=DeA

D (Val v) A = True

D (e1 <bop> e2) A= (D et AND ez (AU A er))

D (Var V) A= (V €€ A)

D(Vi=e)A=DeA

D(eF{D}) A=DeA

D (e1.F{D} :=e3) A= (D et AND ez (AU A ey))

D (eM(es)) A=(DeANDses (AU Ae))

D{V:T;e} A=De (A6 V)
D(e1;5e2) A=(Deit AND ez (AU A er))

D (if (e) ey elseex) A=(DeAANDer (AUAe)ADex (AU Ae))
D (while () c) A=(DeAANDc (AU Ae))

D (throwe) A=De A

D (try e1 catch (C V) e2) A= (Det ANDex (AU [{V}]))
Ds [| A = True

Ds (e-es) A=(DeAANDses (AU Ae))

Fig. 13. Definition of D

A (new ©) = {}]

A (Cast Ce)=Ae

A (val v) = [{}]

A (e1 <bop> e2) = Aer U A e

A (var V) = {}]
A(V:i=e)=[{V}]UAe

A (e.FF{D}) = Ae

A (e1.F{D} :=ex) = Aei UAex

A (e.M(es)) = A el Ases
A{V:T;e}=Aec V

.A(el; 62)2A61UA62

A (if (e) e1 else ea) = Ael Ae;g MAes
A (while (b) e) = Ab

A (throw e) = None

A (try ey catch (C V) ea) = Aer M (Aex 6 V)

As [l = [{}]
As (e-es) = A el As es

Fig. 14. Definition of A

The need for option arises because of throw: what should A (throw e) return?
We use None to indicate that the expression will always fail. However, you should
already think of set option as a completion of set with a top element None repre-
senting the universal set of all variable names (called UNTV'). We will discuss this
issue again below, but first we look at the definition of D (Fig. 13) and A (Fig. 14).
They use the auxiliary operations L, M, ©, C and €€ (Fig. 15) which extend U, N,
— and C from set to set option, treating None (almost) as the universal set.

The rules for D and A are essentially straightforward and we just discuss a few
of the ones for A: evaluating if (e) e; else ey guarantees all assignments that
e guarantees, and those that both e; and e; guarantee; evaluating while (b) e
guarantees only the assignments in b because e may never be evaluated; evaluating
{V:T; e} cannot assign to V, because its V is local. The test D e A is even more
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A U B = case A of None = None | |A] = case B of None = None | |B] = [A U B]
AN B = case A of None = B | |A] = case B of None = |A] | |B] = |A N BJ

A © a = case A of None = None | |[A] = |A — {a}]

A C B = case B of None = True | |B] = case A of None = False | |[A] = AC B
a €€ A = case A of None = True | |A] = a € A

Fig. 15. Operations on set option

uniform. It descends into all subexpressions of e in the order they are evaluated,
extends A according to A, and every time it comes across some Var V it checks if
V €€ A, ie. if V has definitely been assigned to beforehand.

Monotonicity of D is proved by induction on e:

LEMMA 2.7. If De A and AC A’ then D e A'.

Let us now come back to the question of None vs. UNIV. If we worked with set
as opposed to set option, we would need to define A (throw _) = UNIV to ensure
that A (if (e) throw _ else e3) = A e U A eg, i.e. that A (throw _) does not
reduce the overall result, which should only reflect normal evaluations. Returning
UNIV in the case of guaranteed throw is what Schirmer [2003] does. For a start,
this loses direct executability, as UNIV is not a finite set. What is worse, in Jinja
it would lead to undesirable imprecision of the analysis. Let e be the expression
if (Var B) {V:T; throw _} else V := true. We would obtain A {V:T'; throw _}
= UNIV — {V}, A e = {}, and hence = D (e; V := Var V) {B}, contrary to
what one would expect. This is where None comes in: we would like UNIV — {V}
= UNIV, but since that does not hold, we introduce None as the new top element
of the lattice and define © such that None © V = None. Schirmer [2003] gets
away with UNIV because he does not allow e above: it contains both a local and
a global V, something that Java forbids. In Jinja, however, we did not want to ban
nested declarations of the same variable, which cripples the classic block structure.

2.8 Well-formed Jinja Programs
Well-formedness of Jinja method declarations

wf-J-mdecl P C (M, Ts, T, pns, body) =

| Ts| = |pns| A distinct pns A this ¢ set pns A

(3 T'. P,[this — Class C, pns [—] Ts] F body :: T"AN P+ T'< T) A
D body |{this} U set pns|

extends weak well-formedness (§2.4.1) by requiring that method bodies a) are well-
typed with a subtype of the declared return type, and b) pass the definite assign-
ment test assuming only this and the parameters are initialized. A Jinja program
is well-formed iff all its method bodies are:

wf-J-prog = wf-prog wf-J-mdecl

2.9 Type Safety

In §2.9 we prove type safety in the traditional syntactic way [Wright and Felleisen
1994]: we show progress (every well-typed expression that is not final can reduce)
and subject reduction (well typed expressions reduce to well-typed expressions
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and their type may only become more specific). These inductive proofs need a
number of new notions (invariants) to go through.

2.9.1 Conformance. It expresses that semantic objects conform to their syntac-
tic description. Let v,, be a map to values and T, one to types:

Conformance of values to types.

Phtv:<T=3T. typeof v =T ANPFT' T

Conformance of fields to types.
Pht vy () Ty =VFDT. Ty, FD = |T| — (3v. v;m FD = |v] A P,h v :< T)

Weak conformance of local variables to types.

Phtovm (Do Tm =VVo. 0y, V=|v)] — 3T Tm V=|T|ANPhtv:<T)

Conformance of objects.

P,h = obj /=
let (C, vm) = obj in 3FDTs. P - C has-fields FDTs N P,h & vy (:<) map-of FDTs

Conformance of heaps.

Prh+y=Naobj. ha=|obj] — P,hF 0bj /) A preallocated h
preallocated h =V C€sys-zepts. I fs. h (addr-of-sys-zept C) = [(C, fs)]

Conformance of states.
PEFsy=let(h)=sinPrhAPht1(<)yE

Note that (:<) says that all declared fields must have values of the right type,
whereas (:<),, says that only initialized variables must have values of the right
type. This reflects the difference in initialization of fields and local variables.

2.9.2  Runtime Type System. The proof of subject reduction requires a modified
type system. The purpose of F :: (Fig. 12) is to rule out not just unsafe expressions
but “ill-formed” ones in general. For example, assignments to this are considered
bad style and are thus ruled out although such assignments are perfectly safe (and
are in fact allowed in the JVM). But now we need a type system that is just
strong enough to characterize absence of type safety violations and is invariant
under reduction. For a start, during reduction expressions containing addresses
may arise. To make them well-typed, the runtime type system [Drossopoulou
and Eisenbach 1999] takes the heap into account as well (to look up the class of an
object) and is written P,E,h - e : T. But there are more subtle changes exemplified
by the rule for field access: P,E t e.F{D} :: T requires P F C sees F:T in D if e
is of class C. If e reduces to an object belonging to a subclass of C, this condition
may no longer be met. Thus we relax it to P - C has F:T in D which is preserved
by reduction and is still strong enough to imply type safety. It is interesting to note
that this change was missed by Flatt et al. [1999], which invalidates their Lemma 6
and thus subject reduction. Please keep in mind that the runtime type system is a
purely technical device needed in the proof of type safety.

In Fig. 16 we show only those rules for F : (and F [:]) that differ from their
::-counterpart beyond the addition of h. The most frequent change is the following.
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typeofp, v = | T PEhte: T is-refT T is-class P C
P,EhtValov: T P,Eh t- Cast C e : Class C
PEhF e : Ty PEhF es:To EV =|T] PEhtFe:T PrT'L<T
P,E,h - e1 <=> eg : Boolean P,Eht V:=¢e: Void
P,E,h - e : Class C P+ C has F:T in D P,Ehte: NT
PEht eF{D}: T P,Eht eF{D}: T
P,Eh t- e1 : Class C Pt Chas F:T in D P,Eh - e2: To PrTo <T
P,Eht e1.F{D} := ey : Void
P,Eht e : NT P,Eht ey :To P,Ehte: NT P,Ehtes[]Ts

P,E.,h F e1.F{D} := ez : Void P,E.h+ eM(es): T
P,E(V— T)htFe: T PEhte: Ty is-refT Ty
PELF {V:T;e}: T P.E,h - throw e : T

P,Eht e : T P,E(V +— Class C),h ez : T2 PHT <T>

P,E,h - try e; catch (C V) ez : To

Fig. 16. Core of runtime typing rules

Expressions that are required to be of class type by :: may reduce to null. In order
to preserve well-typedness we have to add rules for the case e :: NT in e.F{D},
e.F{D} := ey and e.M(es). Note that we lose uniqueness of typing: null.F{D}
unavoidably does not even have a unique least type anymore. A similar situation
arises with throw e and Cast C e where we avoid an additional rule by requiring
e to be of reference type (which includes NT'). For try e; catch (C' V) ea we no
longer require e; and es to have the same type because reduction of e; may also
have reduced its type. Then there is the change from sees to has for field access
and update. And finally we drop two preconditions in the rules for V := e and
{V:T; e} just to show that they are orthogonal to type safety.

2.9.3 The type safety proof. Under suitable conditions we can now show progress:

LemMA 2.8. (Progress) If wwf-J-prog P and P+ h/ and P E.hte: T
and D e |dom ] and — final e then Je’ 5. P F (e,(h, 1)) — (e's').

The proof is by induction on P,E,h - e : T. Because of the special treatment of
{V:T; V:=Val v; _} we need a slightly modified induction scheme with a separate
rule for this case. Alternatively one can do an induction on the size of e.

Let us examine the necessity for the individual premises. Weak well-formedness
of P is needed to ensure that each method declaration has as many parameter
types as parameter names, a precondition of the method call rule. In addition well-
formedness is necessary for the following subtle reason: even if P defines a class
C, relations has-fields (needed for the reduction of new) and sees (needed for the
reduction of method calls) are only defined if P is well-formed because acyclicity
is needed in the traversal of the class hierarchy. Well-typedness of e is needed,
for example, to ensure that in every method call the number of formal and actual
parameters agrees. Heap conformance (P + h 4/) is needed because otherwise an
object may not have all the fields of its class and field access may get stuck. Definite
assignment is required to ensure that variable access does not get stuck.
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Eventually we show that a sequence of reductions preserves well-typedness by
showing that each reduction preserves well-typedness. However, preservation of
well-typedness requires additional assumptions, e.g. conformance of the initial heap.
Thus we need to show conformance of all intermediate heaps, i.e. preservation of
heap conformance with each step. We need three auxiliary preservation theorems
which are all proved by induction on P F (e,(h, 1)} — (e/,(h', I')):

THEOREM 2.9. If P+ (e,(h, 1)) — (e/,(h, I')) and P,E,ht e: T and
PFhy then PF I .

THEOREM 2.10. If P+ (e,(h, 1)) — (e/,(h', 1)) and P,E,h - e : T and
PhF1(:<)y E then P F U (:<), E.

THEOREM 2.11. If wf-J-prog P and P F (e,(h, 1)) — (e/,(#’, I')) and
D e |dom 1] then D e’ |dom I'].

Because preservation of definite assignment has not been treated in the litera-
ture before, we look at a typical case in detail: sequential composition. We as-
sume D (e; ez) |dom 1], i.e. D e |[dom | A D es (|dom I] U A e) and have to
show D (e; e2) |dom I'], i.e. D €' |dom I'| A D ey (|dom I'| U A ¢'). From
D e |dom 1] it follows by induction hypothesis that D e’ |dom !’|, and from
D ey (|dom 1] U A e) it follows with lemma

P E (e, (h, 1)) = (e/; (B, ")) = |dom I U AeC |[dom '] UA e
(which is proved by induction over —) together with monotonicity of D that

D ey ([dom I'] U A e'), thus concluding the case.
The main preservation theorem is single step subject reduction:

THEOREM 2.12. If wf-J-prog P and P F (e,s) — (e/;s"y and P,EF + s / and
P,Ehpste: T then 3T. P Ehps't-e: T"ANPFT <T.

The proof is again by induction on —.
Now we extend subject reduction to —*. To ease notation we introduce the
following definition

PEskte:T\/=PEFsANPEhpste: T
Now we can combine the auxiliary preservation theorems and subject reduction:
[wf-J-prog P; P + (e,s) — (e',s"); P,E,ste: T /]
= 3T . PEs'+e: T JAPFT T
Induction yields the final form of subject reduction:
THEOREM 2.13. If wf-J-prog P and P F (e,s) —* {e’s") and
PEste: T/ then 3T. P Es'Fe: T VAPFT T
Combining this theorem, the extension of Theorem 2.11 to —*, and progress, and

replacing the runtime type system by the original one, yields

COROLLARY 2.14. (Type Safety)
If wf-J-prog P and P,Et+ s/ and P,EF e :: T and D e |[dom (lcl s)] and
P F (e,s) —* (e,s") and Pe’ s". P F (e',s") — (e’'s") then
(3v.e’=Val v A Php s'F v :< T)V (3a. ¢ = Throw a A a € dom (hp §')).
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If the program and the initial state are ok, and the expression is well-typed (w.r.t.
F ::) and has the definite assignment property, then reduction to normal form yields
either a value of a subtype of the initial expression or throws an existing object.

Note that we intentionally leave out the details of many of these proofs because
type safety proofs abound in the literature.

2.10 Related Work

Most closely related are the work by Nipkow and Oheimb [1998; 1999] which pro-
vided the starting point for our big step semantics. Also closely related is the
small step semantics by Drossopoulou and Eisenbach [1999]. The main difference is
that they distinguish three very similar languages and transform from one into the
next, whereas we have intentionally started with the “enriched language” (hence
the class annotations in field references) and have taken care to identify it with the
“runtime language”. There are also a number of smaller differences (e.g. we have
omitted interfaces and arrays for space reasons, although they were present in our
previous work [Nipkow and Oheimb 1998]), in particular the way in which method
calls are unfolded: we use local variables to hold the parameter values whereas they
choose new names and add those to the store. A name is new if it is not yet in
the domain of the store. This scheme would need to be refined in a language like
Jinja where one can have uninitialised local variables. Also closely related is the
small step semantics by Flatt et al. [1999] who define a much smaller subset of
Java without mutable variables. Nobody seems to have connected these two styles
of Java semantics before, except Nipkow [2005], who obtained an even closer corre-
spondence, but at the cost of allowing dynamic binding in the big step semantics,
too. Syme [1999] formalised the work by Drossopoulou and Eisenbach [1999] in his
theorem prover DECLARE. The main difference is that his store is a list of maps,
one for each method invocation. DECLARE, just like Isar [Wenzel 2002], aims at
readable proofs. Ancona et al. [2001] analyse a feature of Java we have ignored,
namely the possibility to declare which exceptions a method may raise. This leads
to very subtle interactions between type system and exceptions. Schirmer [2004]
has analysed the interaction of packages and access modifiers. On the other end of
the spectrum we have Featherweight Java [Igarashi et al. 2001], a minimal subset of
Java which was used to study type soundness proofs. On the borderline to program
verification we have the denotational semantics of Java by Huisman [2001]. Further
aspects formalised in the literature but beyond this paper include multi threading,
dynamic class loading, inner classes, generic classes and mixins.

3. JINJA VIRTUAL MACHINE

This section presents the machine model of the Jinja Virtual Machine (§3.1) and
its operational semantics, first without (§3.2) and then with (§3.3) runtime type
checks.

3.1 Machine Model

The model of the Jinja VM comprises the state space and the definition of method
bodies. The state space of the Jinja VM is modelled closely after the Java VM.
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The state consists of a heap, a stack of call frames, and a flag whether an exception
was raised (and, if yes, a reference to the exception object).

types jom-state = addr option X heap X frame list

The heap is the same as in the source language. The exception flag corresponds
to the expression throw in the source language. The frame list is new.

Each method execution gets its own call frame, containing its own operand stack
(a list of values), its own set of registers? for local variables (also a list of values),
and its own program counter. We also store the class and name of the method and
arrive at:

types frame = opstack X registers X cname X mname X pc
opstack = wval list
registers = val list

It will turn out that the list of local variables is of fixed length, i.e. does not change
with program execution. In fact, it is only modified and accessed by updating and
indexing it at some position. Hence it can be implemented as an array. The
size of the operand stack may change during execution, but here the maximum
size is known statically. This enables efficient implementation for the stack as well.
Although the registers do not exclusively store the local variables of the method, but
also its parameters and this-pointer, we use the terms registers and local variables
interchangeably when the distinction is not important or clear from context.

The instruction set of the Jinja VM is listed in Fig. 17. The instructions are a bit
more abstract than comparable Java VM instructions, but no further conceptual
simplifications have been made. In Java, there is for instance a separate Load in-
struction for most of the basic machine types, in Jinja there is only one polymorphic
instruction. The more high-level instructions that may seem to be a substantial
simplification over a real machine on the other hand (like Getfield, Putfield and
Invoke), have a direct correspondence to instructions in the Java VM.

Method bodies are lists of instructions together with an exception table and two
numbers mzs and mxlg. These are the maximum operand stack size and the number
of local variables (not counting the this pointer and the parameters of the method,
which are stored in the first 0 to n registers). So the type parameter ‘m for method
bodies gets instantiated with nat x nat x instr list x ex-table:

types jum-method = nat X nat X instr list x ex-table
Jjum-prog = jum-method prog

The exception table is a list of tuples (f, t, C, h, d):
types ez-table = (nat x nat X cname X nat X nat) list

The asymmetric interval [f, ¢) denotes those instructions in the method body that
correspond to the try block on the source level. The handler pc h points to the
first instruction of the corresponding catch block. The code starting at h is the

2We deliberatly deviate here from the nomenclature of the JVM specification that calls these local
variables. They hold the this-pointer, the parameters, and what would be the local variables in
the source language. It will be important when talking about the compiler below to distinguish
between these.
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datatype instr =

Load nat load from register
Store nat store into register
Push wval push a constant

New cname

Getfield vname cname
Putfield vname cname
Checkcast cname
Invoke mname nat

create object on heap

fetch field from object

set field in object

check if object is of class cname

invoke instance method with nat parameters
return from method

|
|
|
|
|
|
|
| Return
|
|
|
|
|
|

Pop remove top element

IAdd integer addition

Goto int goto relative address
CmpEq equality comparison
IfFalse int branch if top of stack false
Throw throw exception

Fig. 17. The Jinja bytecode instruction set.

exception handler, and d is the size of the stack the exception handler expects.
An exception handler protects a program position pc iff pc € [f,t). An exception
table entry matches an exception F if the handler protects the current pc and if
the class of F is a subclass of C.

3.2 Operational Semantics

This section defines the state transition relation of the Jinja VM.

For easy direct executability, our main definition of the operational semantics
of the Jinja VM is written down in a functional rather than in a relational style.
The function ezec :: jum-prog = jum-state = jum-state option describes one-step
execution:
exec P (zp, h, []) = None
exec P (la], h, frs) = None
exec P (None, h, (stk, loc, C, M, pc)- frs) =
(let i = (instrs-of P C M)p,q); (wp’, B/, frs’) = ewec-instr i P h stk loc C M pc frs
in |case zp’ of None = (None, h’, frs’)

| la] = find-handler P a h ((stk, loc, C', M, pc) - frs)])
It says that execution halts if the call frame stack is empty or an unhandled excep-
tion has occurred. In all other cases, execution is defined: exec decomposes the top
call frame, retrieves the instruction list of the current method via instrs-of, dele-
gates actual execution for single instructions to exec-instr, and finally sets the pc
to the appropriate exception handler (with find-handler) if an exception occurred.

The function instrs-of selects the instruction sequence of method M in class C
of program P. As the operational semantics of the Jinja VM at this level is phrased
in a functional rather than a relational style, we turn the field and method accessor
relations of §2.1.4 into functions. To look up methods, we use method, to look up
fields, we use field. They satisfy:

Pl Csees M: Ts—T = m in D = method P C M = (D, Ts, T, m)
PF Csees F:Tin D = field P CF = (D, T)
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Exception handling in find-handler (definition omitted) is similar to the Java
VM: it looks up the exception table in the current method, and sets the program
counter to the first handler that protects pc and that matches the exception class. If
there is no such handler, the topmost call frame is popped, and the search continues
recursively in the invoking frame. If no exception handler is found, the exception
flag remains set and the machine halts. If this procedure does find an exception
handler (f, ¢, C, h, d), it cuts down the operand stack of the frame to d elements,
puts a reference to the exception on top, and sets the pc to h. This is different from
the Java VM where the stack is always emptied. Thus exception handling in the
Jinja VM is a generalisation of the Java VM where d is always 0. Leaving a number
of elements on the stack gives us a nice way to translate try-catch constructs of the
source language that handle exceptions in the middle of an expression as opposed
to just on the statement level as in Java.

For some proofs the relational view is more convenient than the functional one.
Therefore we also define the one-step state transition relation:

Pro 2 o' = (exec P o = |o'])

The state transition relation - is the reflexive transitive closure of L"q.

The definition of exec-instr in Fig. 18 is large, but straightforward. The param-
eters of exec-instr are the following: the instruction to execute, the program P, the
heap h, the operand stack stk and local variables loc of the current call frame, the
class Cy and name M of the method that is currently executed, the current pc,
and the rest of the call frame stack frs. One of the smaller definitions in ezec-instr
is the one for the IAdd instruction:

exec-instr IAdd P h (Intg i2 - Intg i1 - stk) loc Co Mo pc frs =
(None, h, (Intg (i1 + i2) - stk, loc, Co, Mo, pc + 1) - frs)

It takes the top two values as integers from the stack, adds them and puts the
result back onto the stack. The program counter is incremented, the rest remains
untouched.

Most instructions in Fig. 18 are of this simple form. Some of them use new
functions: hd and ¢l return the head and tail of a list, and the destructor the-Addr
is defined by the equality the-Addr (Addr a) = a. The New instruction needs
new-Addr which was introduced in §2.2. A new object of class C with all fields
set to default values is produced by blank P C' (not shown). Remember that the
field part of objects is a map from name and defining class to value, so fs (F, C)
used for Getfield and Putfield is the value of field F' defined in class C. The
Checkcast instruction uses cast-ok P C' h v (also not shown) to check if the value
v is an address that points to an object of at least class C.

The definition for Invoke M n is the most complex: it first uses take n stk to
get the the first n elements of the stack (the parameters in reverse order), then it
looks up the dynamic class C of the object, determines the correct method (using
method P C M), and finally constructs the new state. If the object reference r is
Null an exception is thrown, otherwise a new call frame for the invoked method is
prepared. The new call frame has an empty operand stack, the object reference r
as this pointer in local variable 0, the parameters (rev ps is ps in reverse order) in
the next n variables, and the rest of the local variables filled with a dummy value
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exzec-instr (Load n) P h stk loc Co Mo pc frs = (None, h, (locp - stk, loc, Co, Mo, pc + 1) - frs)

(

exec-instr (Store n) P h stk loc Co Mo pc frs =

(None, h, (tl stk, loc[n := hd stk], Co, Mo, pc + 1)- frs)
(

ezec-instr (Push v) P h stk loc Co Mo pc frs = (None, h, (v - stk, loc, Co, Mo, pc + 1) frs)

exzec-instr (New C') P h stk loc Co Mo pc frs =
(case new-Addr h of None = (| addr-of-sys-zcpt OutOfMemory|, h, (stk, loc, Co, Mo, pc) - frs)
| la] = (None, h(a — blank P C), (Addr a- stk, loc, Co, Mo, pc + 1) - frs))

exzec-instr (Getfield F' C) P h stk loc Co Mo pc frs =

(let v - = stk; zp’ = if v = Null then | addr-of-sys-zcpt NullPointer| else None;
(D, fs)| = h (the-Addr v)

in (zp’, h, (the (fs (F, C))-tl stk, loc, Co, Mo, pc + 1)-frs))

ezec-instr (Putfield F' C) P h stk loc Co Mo pc frs =

(let v-_ = stk; _-r-_ = stk; zp’ = if r = Null then | addr-of-sys-zcpt NullPointer| else None;
Addr a = r; (D, fs)] = ha; ' = h(a — (D, fs((F, C) — v)))

in (zp’, h', (tl (H stk), loc, Co, Mo, pc + 1) - frs))

ezec-instr (Checkcast C) P h stk loc Co Mo pc frs =
(let v-_ = stk; zp’ = if = cast-ok P C h v then | addr-of-sys-zcpt ClassCast| else None
in (IP,7 h, (Stk7 loc, Co, Mo, pc + 1)f7‘8))

exec-instr (Invoke M n) P h stk loc Co Mo pc frs =

(let ps = take n stk; r = sthy,);
zp’ = if r = Null then | addr-of-sys-zcpt NullPointer| else None;
1(C, )| = h (the-Addr r); (D, M', Ts, mzs, mzlo, ins, at) = method P C M;
= (], [r] Q rev ps Q replicate mzly arbitrary, D, M, 0)

in (xp’, h, f'- (stk, loc, Co, Mo, pc)- frs))

exec-instr Return P h stko loco Co Mo pc frs =

(if frs =[] then (None, h, [])

else let v - _ = stko; (stk, loc, C, m, pc)-_ = frs; n = |fst (snd (method P Co My))|
in (None, h, (v-drop (n + 1) stk, loc, C, m, pc + 1)-tl frs))

ezec-instr Pop P h stk loc Co Mo pc frs = (None, h, (tl stk, loc, Co, Mo, pc + 1) - frs)

exec-instr IAdd P h stk loc Co Mo pc frs =
(let Intg i2 - - = stk; _- Intg i1 -~ = stk
in (None, h, (Intg (i1 + i2)-tl (¢ stk), loc, Co, Mo, pc + 1)- frs))

exec-instr (IfFalse i) P h stk loc Co Mo pc frs =

(let pc’ = if hd stk = Bool False then nat (int pc + 1) else pc + 1

in (None, h, (tl stk, loc, Co, Mo, pc’)- frs))

exec-instr CmpEq P h stk loc Co Mo pc frs =

(let vo -~ = stk; _-v1-- = stk

in (None, h, (Bool (vi = v2) -l (tl stk), loc, Co, Mo, pc + 1) - frs))
ezec-instr (Goto 1) P h stk loc Co Mo pc frs =

(None, h, (stk, loc, Co, Mo, nat (int pc + 1)) - frs)

exec-instr Throw P h stk loc Co Mo pc frs =
(let zp’ = if hd stk = Null then | addr-of-sys-zcpt NullPointer| else |the-Addr (hd stk) ]
in (‘Tp/a h, (Stk» loc, Co, Mo, pC)‘fT‘S))

Fig. 18. Single step execution
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arbitrary (replicate n v is a list of length n that contains only v-elements). The
new call frame also records the method (defining class D and name M), and has
the pc set to 0.

It is in this Invoke context that Return is understood best: if the current frame
is the only one on the frame stack, the machine halts; if the current frame is
not the only one, then the next frame on the stack must be the caller where the
corresponding Invoke occurred. The Return instruction removes the current frame
from the call stack and manipulates the caller frame. In the caller, it drops the
parameters and the object reference, i.e. n + 1 elements, from the stack (drop n s
is the dual to take n xs), puts the return value v on top, and increments the pc.

This style of VM is also called aggressive, because it does not perform any runtime
type or sanity checks. It just assumes that everything is as expected, e.g. for IAdd
that there are indeed two integers on the stack. If the situation is not as expected,
the operational semantics is unspecified at this point. In Isabelle, this means that
there is a result (because HOL is a logic of total functions), but nothing is known
about that result. It is the task of the bytecode verifier to ensure that this does
not occur.

3.3 A Defensive VM

Although it is possible to prove type safety by using the aggressive VM alone, it is
crisper to write and more obvious to see what the bytecode verifier guarantees when
we additionally look at a defensive VM. The defensive VM builds on the aggressive
one by performing extra type and sanity checks. We can then state the type safety
theorem by saying that these checks will never fail if the bytecode is well-typed.
This differs from the approach of Wright and Felleisen [1994] that we follow for the
source language where we prove progress and preservation instead. The separation
into ezec-instr and check-instr allows us to write down the semantics in a functional
rather than relational style at the single-step level. This in turn results in a higher
degree of automation in the proofs.
To indicate type errors, we introduce another data type.

datatype 'a type-error = TypeError | Normal 'a

Similar to §3.2, we build on a function check-instr that is lifted over several steps.
At the deepest level, we take apart the state, check if the current method exists,
feed check-instr with parameters (which are the same as for exec-instr), and check
that pc and stack size are valid:

check P 0 =
let (zcpt, h, frs) = o
in case frs of [| = True
| (stk, loc, C, M, pc)-frs' =
Pt Chas M A
(let (C', Ts, T, mas, mzlo, ins, xt) = method P C M; i = INS[pe]
in pc < |ins| A |stk| < mas A check-instr i P h stk loc C M pc frs’)

The next level is the one-step execution of the defensive VM, which stops in case
of a type error. If there is no type or other error, it simply calls the aggressive VM:

execq P o = if check P o then Normal (exec P o) else TypeError
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check-instr (Load n) P h stk loc C Mg pc frs = (n < |loc|)
check-instr (Store n) P h stk loc Co Mo pc frs = (0 < |stk] A n < |loc|)
check-instr (Push v) P h stk loc Co Mo pe frs = (- is-Addr v)
check-instr (New C) P h stk loc Co Mo pe frs = is-class P C

(

check-instr (Getfield F C) P h stk loc Co Mo pc frs =
(0 < |stkl AN(3C'T. Pt Csees F:T in C') A
(let (C', T) = field P C F; ref - - = stk
in C' = C A is-Ref ref A
(ref # Null —
h (the-Addr ref) # None A
(let (D, vs)| = h (the-Addr ref)
in P+ D =* C Aws (F, C)# None A P,h F the (vs (F, C)) :< T))))

check-instr (Putfield F C) P h stk loc Co Mo pc frs =
(1< |stl AN(3C'"T. PF Csees F:T in C') A
(let (C', T) = field P C F; v-_ = stk; _-ref - = stk
in C'= C A is-Ref ref A
(ref # Null —
h (the-Addr ref) # None A
(let |(D, -)] = h (the-Addr ref) in P+ D <* C A P,h v :< T))))

check-instr (Checkcast C') P h stk loc Co Mo pc frs =
(0 < |stk| A is-class P C A is-Ref (hd stk))

check-instr (Invoke M n) P h stk loc Co Mg pc frs =

(n <|stk| A is-Ref stkp,) A
(let Addr a = stky,); |(C, -)] = ha; (-, Ts, -) = method P C M
inha# None NP+ Chas M N P,h + rev (take n stk) [:<] Ts)))

check-instr Return P h stk loc Co Mo pc frs =
(0 < |stk| A
0 < |frs| —
Pt Co has Mg A (let v-_ = stk; (-, -, T, -) = method P Co Mo in P,h v :< T)))

check-instr Pop P h stk loc Co Mo pc frs = (0 < |stk|)

check-instr IAdd P h stk loc Co Mo pc frs =
(1 < |stk| A is-Intg (hd stk) A is-Intg (hd (tl stk)))

check-instr (IfFalse b) P h stk loc Co Mo pc frs =
(0 < |stk| A is-Bool (hd stk) A 0 < int pc + b)

check-instr CmpEq P h stk loc Co Mo pc frs = (1 < |stk|)
check-instr (Goto b) P h stk loc Co Mg pc frs = (0 < int pc + b)
check-instr Throw P h stk loc Co Mo pc frs = (0 < |stk| A is-Ref (hd stk))

Fig. 19. Type checks in the defensive Jinja VM.

Again, we also define the relational view. This time, it is easier to give two
. . djvi
introduction rules for =5:

execqy P o = TypeError evecq P 0 = Normal |o’|
P+ Normal o Ml TypeError P F Normal o Ml Normal o'

. dj . oy dj
We write == for the reflexive transitive closure of 2.
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It remains to define check-instr, the heart of the defensive Jinja VM. We do so
in Fig. 19. The IAdd case looks like this:

check-instr IAdd P h stk loc Co Mo pc frs = (1 < |stk| A is-Intg (hd stk) A is-Intg (hd (tl stk)))

IAdd requires that the stack has at least two entries (1 < |stk|), and that these
entries are of type Integer (checked with the is-Intg function). For Load and Store
there are no type constraints, because they are polymorphic in Jinja. In the Java
VM, the definition would be in the style of IAdd, requiring integer for iload, float
for fload, and so on. The discriminator functions is-Addr and is-Ref in Fig. 19 do
the obvious.
Because of its size, we also take a closer look at the instruction Getfield:
check-instr (Getfield F C) P h stk loc Co Mo pc frs =
(0 < |stkl AN(3C'T. PF Csees F:T in C') A
(let (C', T) = field P C F; ref - - = stk
in C'= C A is-Ref ref A
(ref # Null —
h (the-Addr ref) # None A
(let | (D, vs)] = h (the-Addr ref)
in P+ D =* C Aws (F, C)# None A P,h F the (vs (F, C)) :< T))))
The Getfield F C instruction is supposed to access the object reference on top
of the stack, remove it from the stack, and to put the value of field F' defined in
class C onto the stack instead. To ensure this can work without errors, the first
two conjuncts in this definition demand that the stack is large enough to hold the
object reference, and that the field F' is visible from class C. The let-part collects
the defining class and the type of field F, as well as the object reference. The next
line checks that the field is of the right class (¢ = () and that we are indeed
dealing with an object reference. If that reference does not happen to be Null, the
heap at position ref must contain an object of class at least C| the object must
contain a field F (vs (F, C) # None), and the field value must be of the type that
was declared for the field. The Putfield instruction works analogously.
It is easy to see that defensive and aggressive VM have the same operational
one-step semantics if there are no type errors.

THEOREM 3.1. One-step execution in aggressive and defensive machines
commutes if there are no type errors.

execq P o # TypeError = execq P 0 = Normal (exec P o)

Figure 20 depicts this result as a commuting diagram. The proof is trivial (and
fully automatic in Isabelle), because the defensive VM is constructed directly from
the aggressive one.

For executing programs, we will later also need a canonical start state. In the
Java VM, a program is started by invoking its static main method. We start the
Jinja VM by invoking any existing method M (without parameters) in a class C. We
define the canonical start state start P C' M as the state with exception flag None,
a heap start-heap P, and a frame stack with one element. The heap start-heap P
contains the preallocated system exceptions and is otherwise empty. The single
frame has an empty operand stack, the this pointer set to Null, the rest of the
register set filled up with a dummy value arbitrary, the class entry set to C, the
name to M, and the program counter 0.
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execy
Normal o - Normal o’

ezec
Fig. 20. Aggressive and defensive Jinja VM commute if there are no type errors.

start-state P C M =
let (D, Ts, T, mzs, mzlg, b) = method P C M
in (None, start-heap P, [([], Null- replicate mzlg arbitrary, C, M, 0)])

This concludes the formalisation of the Jinja VM. It will serve as the basis for
the proof of type safety below.

3.4 Related Work

Most closely related to the virtual machine formalisation presented here is the
Ph.D. thesis by Klein [2003]. Barthe et al. [2001] use the Coq system for a similar
formalisation of the Java VM. Liu and Moore [2003] show one of the most compre-
hensive executable models of the KVM (a restricted JVM for embedded devices)
in the theorem prover ACL2. Cohen [1997] was the first to propose the concept of
a defensive Java VM and to formalise it in a theorem prover. Bertelsen [1997] was
one of the first to give a formal semantics for the JVM. Most publications about
Java’s bytecode verifier contain some form of reference virtual machine, be that in
the form of a traditional small step semantics, or in an explicitly executable format
in a theorem prover. Instead of recounting all of these here we refer to the overview
articles [Alves-Foss 1999; Hartel and Moreau 2001; Nipkow 2003a] and the related
work section on bytecode verification in §4.11.

4. BYTECODE VERIFIER

The JVM relies on the following assumptions for executing bytecode:

Correct types. All bytecode instructions are provided with arguments of the type
they expect on operand stack, registers, and heap.

No overflow and underflow. No instruction tries to retrieve a value from the
empty stack, no instruction puts more elements on the stack than statically specified
in the method, and no instruction accesses more registers than statically specified
in the method.

Code containment. The program counter is always within the code array of the
method. Specifically, it must not fall off the end of the method’s code.
Initialised registers. All registers apart from the this pointer and the method

parameters must be written to before they are first read. This corresponds to the
definite assignment requirement for local variables on the source level.
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instruction stack registers

Load 0 1( [, [Class B, Integer] )]
Store 1 L( [Class A], [Class B, Err] )|
Load 0 1( [, [Class B, Class A] )]
Getfield F A |( [Class B], [Class B, Class A])]|
Goto —3 [( [Class A], [Class B, Class A] )]

Fig. 21. Example of a method well-typing.

It is the purpose of the bytecode verifier (BV) to ensure statically that these as-
sumptions are met at any time during execution.

Bytecode verification is an abstract interpretation of bytecode methods: instead
of values, we only consider their types. A state type characterises a set of runtime
states by giving type information for the operand stack and registers. For example,
the first state type in Fig. 21 ([],[Class B, Integer]) characterises all states whose
stack is empty, whose register 0 contains a reference to an object of class B (or to a
subclass of B), and whose register 1 contains an integer. A method is called well-
typed if we can assign a well-typing to each instruction. A state type (ST,LT)
is a well-typing for an instruction if it is consistent with the successors of the
instruction and if the instruction can be executed safely in any state whose stack
is typed according to ST and whose registers are typed according to LT. In other
words: the arguments of the instruction are provided in correct number, order and
type. We explain consistent below.

The example in Fig. 21 shows the instructions on the left and the type of stack
elements and registers on the right. The method type is the full right-hand
side of the table, a state type is one line of it. The type information attached
to an instruction characterises the state before execution of that instruction. The
|...] around each entry means that it was possible to predict some type for each
instruction. If one of the instructions had been unreachable, the type entry would
have been None. We assume that class B is a subclass of A and that A has a field
F of type A.

Execution starts with an empty stack and the two registers holding a reference
to an object of class B and an integer. The first instruction loads register 0, a
reference to a B object, on the stack. The type information associated with the
following instruction may puzzle at first sight: it says that a reference to an A
object is on the stack, and that usage of register 1 may produce an error. This
means the type information has become less precise but is still correct: a B object
is also an A object and an integer is now classified as unusable (Err). The reason
for these more general types is that the predecessor of the Store instruction may
have either been Load 0 or Goto —3. Since there exist different execution paths to
reach Store, the type information of the two paths has to be merged. The type of
the second register is either Integer or Class A, which are incompatible: the only
common supertype is Err.

Bytecode verification is the process of inferring the types on the right from the
instruction sequence on the left and some initial condition, and of ensuring that
each instruction receives arguments of the correct type. Type inference is the
computation of a method type from an instruction sequence, type checking means
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checking that a given method type fits an instruction sequence.

Figure 21 was an example for a well-typed method: we were able to find a well-
typing. If we changed the third instruction from Load 0 to Store 0, the method
would not be well-typed. The Store instruction would try to take an element from
the empty stack and could therefore not be executed.

In the following, we will formalise the Jinja bytecode verifier by introducing an
abstract framework for well-typedness, then instantiating this framework in §4.6
and §4.7 to get a description of well-typedness for Jinja VM programs as well as an
executable program that computes those well-typings in §4.8 and §4.9. Finally we
show in §4.10 that execution of well-typed programs is safe in the sense motivated
above.

The typing framework uses semilattices (§4.1) and an abstract transfer function
to describe well-typings (§4.2). After detailing which constraints on the transfer
function are necessary to obtain an executable algorithm in §4.3 and refining the
transfer function to make instantiation easier in §4.4, we show an implementation
of Kildall’s algorithm within the framework (§4.5). As the framework itself already
appeared elsewhere [Klein 2003; Klein and Nipkow 2003; Nipkow 2001], we will
keep its description brief and only reproduce the main definitions and properties.

4.1 Semilattices

This section introduces the formalisation of the basic lattice-theoretic concepts
required for data flow analysis and its application to the JVM.

4.1.1 Partial Orders. Partial orders are formalised as binary predicates. Based
on the type synonym ‘a ord = ‘a = ‘a = bool and the notations z C, y = rz y
andz Cry =2 C,y Az +#y,r: 'aordis by definition a partial order iff the
predicate order :: 'a ord = bool holds for r:
order r =
Vz.zCra) AN(Voy.2CryAyCro —a=y)AVazyz. 2CryAyLCrz—zlrz)

A partial order r satisfies the ascending chain condition on A if there is no
infinite ascending chain zg C, 21 C,... in A, and T is called a top element if
z Cp T for all . Instead of “no infinite ascending chain” we require in Isabelle the
equivalent “the converse of r is well-founded”.

accr =wf {(y, z) | ¢ Cr y} topr T=Vz. z T, T

4.1.2 Semilattices. Based on the supremum notation z Uy = fz y and the two
type synonyms ‘a binop = 'a = ‘a = ’'a and 'a sl = 'a set X 'a ord X 'a binop,
the tuple (A,r,f) :: ‘a sl is by definition a semilattice iff the predicate semilat ::
'a sl = bool holds:
semilat (A, r, ) =
order v A closed A f N (Vz€A. VyeA. z Cr x Uy y) N Vz€EA. VyeA. y Crz Uy y) A
(VzeA. VycA. VzeA. 2 Cr2 ANyCrz — =z I_lf y Cr 2)

where closed A f = VzeA. VyeA. z Ury € A

Data flow analysis is usually phrased in terms of infimum semilattices. Here, a
supremum semilattice fits better with the intended application, where the ordering
is the subtype relation and the join of two types is the least common supertype (if
it exists).
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The next sections look at a few data types and the corresponding semilattices
which are required for the construction of the Jinja VM bytecode verifier. The
definition of those semilattices follows a pattern: they lift an existing semilattice
to a new semilattice with more structure. They extend the carrier set and define
two functionals le and sup that lift the ordering and supremum operation to the
new semilattice. In order to avoid name clashes, Isabelle provides separate name
spaces for each theory. Qualified names are of the form Theoryname.localname,
and they apply to constant definitions and functions as well as type constructions.
So Err.sup later on refers to the sup functional defined for the error type in §4.1.3.

Let (A, r, f) in the following be a semilattice.

4.1.3 The Error Type and Err-semilattices. Theory Err introduces an error el-
ement to model the situation where the supremum of two elements does not exist.
It introduces both a data type and an equivalent construction on sets:

datatype ‘a err = Err | OK 'a err A={Err} U{OK z |z. x € A}

The additional z. in {OK z |z. z € A} tells Isabelle that z is a bound variable. It is
used if the set comprehension is of the form {f z |z. P =} rather than just {z | P z}.
An ordering 7 on ‘a can be lifted to ‘a err by making Err the top element:

ler (OKz) (OKy) = zCry
ler_ Err = True
ler Err (OK ) = False

LeEmMA 4.1. If acc r then acc (le ).

The following lifting functional is frequently useful:

lifty f (OK z) (OKy) = fazy
lifta f Err _ = Frr
lifts f _ Err = Err

This leads to the notion of an err-semilattice. It is a variation of a semilattice with
top element. Because the behaviour of the ordering and the supremum on the top
element is fixed, it suffices to say how ordering and supremum behave on non-top
elements. Thus we can represent a semilattice with top element Err compactly by
a triple of type esl:

'a ebinop = 'a = 'a = 'a err 'a esl = 'a set x 'a ord x 'a ebinop
Conversion between the types sl and esl is easy:

esl :: 'a sl = 'a esl sl :: 'a esl = 'a err sl
esl (A, r, f)= (4, r, Xz y. OK (fzy)) sl (A, r, f)=(err A, ler, lifta f)

A tuple L :: ’a esl is by definition an err-semilattice iff sl L is a semilattice.
Conversely, we have Lemma 4.2.

LEMMA 4.2. If semilat L then err-semilat (esl L).
The supremum operation of sl(esl L) is useful on its own:

sup f = lifta (Av y. OK (z Ur y))
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4.1.4 The Option Type. Theory Opt uses the type option and introduces the
set opt as dual to set err,

opt A = {None} U {|y] |y. y € A}

an ordering that makes None the bottom element, and a corresponding supremum
operation:

ler|z] ly] = 2Cry
le r None - = True
ler |-] None = False

sup f |z |y (case fz y of Err = Err | OK z = OK |z])
sup fz None = OK z
sup f None z = OK z

LEMMA 4.3. Let esl (A, r, f) = (opt A, le r, sup f). If err-semilat L then
err-semilat (esl L).

It is possible to define an sl that lifts a semilattice to an option semilattice, but we
only use the esl version below.

LEMMA 4.4. If acc r then acc (le r).

4.1.5 Products. Theory Product provides what is known as the coalesced prod-
uct, where the top elements of both components are identified. In terms of err-
semilattices, this is:

esl :: 'aesl = 'besl = ("a x 'b) esl

esl (A, ra, fa) (B, rg, f) =(A x B,lerarp, sup fa [B)
le : 'a ord = 'b ord = ("a x 'b) ord

lerarg (a1, b1) (a2, b2) = a1 Cpy az A by Cyp b

sup :: 'a ebinop = 'b ebinop = ('a x 'b) ebinop
sup f g (a1,b1) (a2,b2) = Err.sup (Az y.(z,y)) (a1 Uy a2) (b1 Uy b2)
Note that x is used both on the type and the set level.

LEMMA 4.5. If err-semilat L1 and err-semilat Ly then
err-semilat (esl Ly Lo).

LEMMA 4.6. If acc ra and acc rg then acc (le ra rB).

4.1.6  Lists of Fized Length. Theory Listn provides the concept of lists of a given
length over a given set. In HOL, this is formalised as a set rather than a type:

listn A ={xs| |zs| = n A set zs C A}

This set can be turned into a semilattice in a componentwise manner, essentially
viewing it as an n-fold Cartesian product:

sl nat = 'a sl = 'a list sl le :: 'a ord = 'a list ord

sln (A, r, f) = (list n A, le v, maps f) ler = list-ally (Azy. z Cr y)
where maps :: (‘a = 'b = '¢) = 'a list = 'b list = 'c list and list-alls :: ('a = 'b
= bool) = 'a list = 'b list = bool are the obvious functions. Below, we use the
notation xs [C,] ys for zs Ty . ys.
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Fig. 22. Data flow graph for step 3 s3 = [(1,t1),(4,t4)].

LEMMA 4.7. If semilat L then semilat (sl n L).
LEMMA 4.8. If order r and acc r then acc (le 7).

In case we want to combine lists of different lengths, or if the supremum on
the elements of the list may return Err (not to be confused with Err.sup the sup
functional defined in Theory Err, §4.1.3), the following function is useful:

sup :: ('a = b= 'cerr) = 'alist = 'b list = c list err
sup f xs ys = if |zs| = |ys| then coalesce (maps f xs ys) else Err

coalesce [| = OK |]
coalesce (e-es) = Err.sup (A\x xzs. x-xs) e (coalesce es)

This corresponds to the coalesced product. Below, we also need the structure of all
lists up to a specific length:

upto-esl :: nat = 'a esl = ’a list esl
upto-esln (A, r, f) = (Ui < n listi A, ler, sup f)

LEMMA 4.9. If err-semilat L then err-semilat (upto-esl m L).

4.2  Well-Typings

This section describes well-typings abstractly. On this abstract level, there is no
need yet to talk about the instruction sequences themselves. They will be hidden
inside a function that characterises their behaviour. This function and a semilattice
form the parameters of the model.

Data flow analysis and type systems are based on an abstract view of the seman-
tics of a program in terms of types instead of values. At this level, programs are
sequences of instructions, and the semantics can be characterised by a function step
i pe = 's = (pc x 's) list where pc is an abbreviation for nat. It is the abstract
execution function: step p s provides the results of executing the instruction at p,
starting in state s, together with the positions where execution continues. Contrary
to the usual concept of transfer function or flow function in the literature, step p
not only provides the result, but also the structure of the data flow graph at position
p. This is best explained through an example. Figure 22 depicts the information
we get when step 3 s3 returns the list [(1,¢1),(4,t4)]: executing the instruction at
position 3 with state type s3 may lead to position 1 in the graph with result ¢;, or
to position 4 with result t4.

Note that the length of the list and the target instructions do not only depend on
the source position p in the graph, but also on the value of s. It is possible that the
structure of the data flow graph dynamically changes in the iteration process of the
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analysis. It may not change freely, however. §4.3 will introduce certain constraints
on the step function that the analysis needs in order to succeed.

Data flow analysis is concerned with solving data flow equations, which are sys-
tems of equations involving the flow functions over a semilattice. In this case, step
is the flow function and ’s the semilattice. Instead of an explicit formalisation of
the data flow equation, it suffices to consider certain prefixed points. To that end
we define what it means that a method type 7s :: ’s list is stable at p:

stable s p =V (q, T)Eset (step p Tspp)). T Er TS[g)
Stability induces the notion of a method type 7s being a well-typing w.r.t. step:
wt-step 75 =V p<|Ts|. Tsp,) # T A stable Ts p

T is assumed to be a special element in the state space (the top element of the
ordering). It indicates a type error.

An instruction sequence is well-typed if there is a well-typing 7s such that
wt-step TS.

4.3 Constraints on the Transfer Function

This section defines constraints on the transfer function that the data flow algorithm
in §4.5 needs to succeed.
The transfer function step is called monotone up to n iff the following holds:

monon =V71€A. Vp<n. V7'. 7 Cp 7/ — set (step p 7) {C,} set (step p 7')
where
A{C,} B=V(p,7)eA. 37". (p, 7Y€ BATLC, 7’

This means, if we increase the state type 7 at a position p, the data flow graph may
have more edges (but not less), and the result at each edge may increase (but not
decrease).

If for all p < n and all T the position components of step p T are less than n, then
step is bounded by n. This expresses that, from below instruction n, instruction
n and beyond are unreachable: control never leaves the list of instructions below n.

bounded n =V p<n. V7.V (q, 7")Eset (stepp 7). ¢ < n

If for all p < n and 7 € A the values that step p 7 returns are again in A, then
step preserves A up to n:

preserves n = VTEA. Vp<n.V(q, 7')€set (stepp 7). 7' € A

4.4 Refining the Transfer Function

The single transfer function step of §4.2 is compact and convenient for describing
the abstract typing framework. For a large instantiation, however, it carries too
much information in one place to be modular and intuitive. We will therefore
first refine step into a part app for applicability and a part eff for the effect of
instructions, and then instantiate these parts in §4.7. Furthermore, the state space
’s will be of the form ¢ err for a suitable type ’t, in which case the error element
T is Err itself. Given app :: pc = 't = bool, eff :: pc = 't = (pc x 't) list, and
n:nat (the size of the method type), step is defined as follows:
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step p Err = error
step p (OK 1) = (if app p T then map-snd OK (eff p T) else error)

map (Az. (z, Err)) [0..<n]
map (M, y). (z, fy))

The function error is used to propagate the error element Err to every position in
the method type.

If we take the semilattice (A, r, f) to be an err-semilattice and the order r to be
of the form le 7/, we can similarly refine the notion of a well-typing w.r.t. step to a
well-typing w.r.t. app and eff:

error
map-snd f

wt-app-eff s =V p<|7s|. app p 75 A (V(q, T)Eset (eff p Tspp)). T T TS[g))

This is very natural: every instruction is applicable in its start state, and the effect
is compatible with the state expected by all successor instructions.

Function step composed of app and eff as defined above has type pc = 't err
= (pc x 't err) list. This is an instance of the type the stability predicates in §4.2
expect. If we furthermore set n to |7s|, we get the following lemma.

LEMMA 4.10. If the composed function step is bounded by n = |7s|, then
wt-app-eff and wi-step coincide:

bounded |Ts| = wt-step (map OK 78) = wt-app-eff Ts

4.5 Kildall's Algorithm

A well-typing is a witness of well-typedness in the sense of stability. Now we turn
to the problem of computing such a witness. This is precisely the task of a bytecode
verifier: it computes a method type such that the absence of T in the result means
the method is well-typed. Formally, a function bcv :: ’s list = 's list is a bytecode
verifier w.r.t. n :: nat and A :: 's set iff

V1so€list n A. (Vp<n. (bcv Ts0)p) # 1) = (I7s€list n A. 750 [C] 75 A wi-step Ts)

The notation [C,] lifts T, to lists (see also §4.1.6), T is the top element of the
semilattice. In practise, bcv 7sq itself will be the well-typing, and it will also be
the least well-typing. However, it is simpler not to require this.

This section first defines and then verifies a functional version of Kildall’s algo-
rithm [Kildall 1973; Muchnick 1997], a standard data flow analysis tool. In fact, the
description of bytecode verification in the official JVM specification [Lindholm and
Yellin 1999, pages 129-130] is essentially Kildall’s algorithm, an iterative computa-
tion of the solution to the data flow problem. The main loop operates on a method
type 7s and a worklist w :: pc set. The worklist contains the indices of those
elements of 7s that have changed and whose changes still need to be propagated
to their successors. Each iteration picks an element p from w, executes instruction
number p, and propagates the new states to the successor instructions of p. Iter-
ation terminates once w becomes empty: in each iteration, p is removed but new
elements can be added to w. The algorithm is expressed in terms of a predefined
while-combinator of type (‘a = bool) = ('a = 'a) = 'a = 'a which satisfies the
recursion equation
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while b ¢ s = (if b s then while b ¢ (c s) else s)

The term while (As. b s) (As. ¢ s) is the functional counterpart of the imperative
program while b(s) do s := c(s). The main loop can now be expressed as

iter Ts w =

while (M\(7s, w). w # {})
(M(7s, w). let p = SOME p. p € w in propa (step p Tspp)) 7s (w — {p}))
(s, w)

Since the choice SOME p. p € w in iter is guarded by w # {}, we know that
there is a p € w. An implementation is free to choose whichever element it wants.

Propagating the results ¢s of executing instruction number p to all successors is
expressed by the primitive recursive function propa:

propa [| Ts w = (T8, w)

propa (q’-qs) Ts w =
let (¢, 7) =q’5u=7UsrTs
f TS

in propa gs (ts[q := u]) w’)

q; W' = if u = Ts[q then w else {q} U w

In the terminology of the official JVM specification [Lindholm and Yellin 1999,
page 130], 7 is merged with the state of all successor instructions g, i.e., the supre-
mum is computed. If this results in a change of 754, then g is inserted into w.
Kildall’s algorithm is simply a call to iter where the worklist is initialised with
the set of unstable indices; upon termination we project on the first component:

kildall 7s = fst (iter s {p | p < |78| A — stable Ts p})
The key theorem is that Kildall’s algorithm is a bytecode verifier as defined above:

THEOREM 4.11. If (A, r, f) is a semilattice, r meets the ascending chain
condition on A, and step is monotone, preserving, and bounded w.r.t. A and n,
then kildall is a bytecode verifier w.r.t. A and n.

PROOF. The correctness proof proceeds along the following lines. (1) Given the
assumptions of Theorem 4.11, kildall is a total function: The work list either be-
comes smaller, or, if new positions are introduced, the elements they point to are
larger than the element at the position that was taken out. Since there are no
infinitely ascending chains in 7, the algorithm must terminate. (2) The following
are invariants of the analysis (mainly because of monotonicity of step): all positions
not in the worklist are stable, and the computed method type is always between
the start value 7s¢p and any well-typing 7s which is stable everywhere and satis-
fies 7sg C, 7s. Upon termination the worklist is empty, and kildall 7sg is stable
everywhere. With (1) and (2), Theorem 4.11 follows easily. The implication from
left to right holds with the result of the algorithm as witness. The result is stable,
it does not contain T (by assumption), and it is above 7sg because of (2). The
implication from right to left holds, because wt-step implies that 7s is stable and
does not contain T. Because of (2), kildall 75s¢ is smaller than 7s, hence it does not
contain T either. [

This specification of Kildall’s algorithm is executable: the worklist (in the spec-
ification a set) can be implemented by a list, the SOME operator by hd.
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4.6 Semilattice for the Jinja VM

This section takes the first step to instantiate the framework of §4.1 to §4.5. It
defines the semilattice structure on which Jinja’s bytecode verifier builds. It begins
by turning the Jinja types ty into a semilattice in theory SemiType below. We
can then use the abstract combinators of §4.1 to construct the stack and register
structure.

The carrier set types is easy: the set of all types declared in the program.

types P = {T| is-type P T}

The order is the standard subtype ordering < of Jinja and the supremum operation
follows it.

sup i jum-prog = ty = ty = ty err

sup P NT (Class C) = OK (Class C)

sup P (Class C) NT = OK (Class C)

sup P (Class C) (Class D) = OK (Class (lub P C' D))
sup Pty to = (if t; = to then OK ty else Err)

The lub function (not shown here) computes the least upper bound of two classes
by walking up the class hierarchy until one is a subclass of the other. Since every
class is a subclass of Object in a well-formed program (see also wf-prog in §2.4),
this least upper bound is guaranteed to exist.

With SemiType.esl P = (types P, Az y. P+ z < y, sup P) we have proved the
following theorem.

THEOREM 4.12. If P is well-formed, then SemiType.esl is an err-semilattice
and the subtype ordering < satisfies the ascending chain condition:

wf-prog - P => err-semilat (SemiType.esl P)
wf-prog - P => acc (Az y. P+ z < y)

PRrROOF. The proof is easy: it is obvious that < is transitive and reflexive. If
P is well-formed, < is also antisymmetric, hence a partial order. It satisfies the
ascending chain condition, because, if P is well-formed, the class hierarchy is a tree
with Object at its top. We have already argued above that sup is well defined,
and it is easy to see that it is closed w.r.t. types P. Hence SemiType.esl P is an
err-semilattice. O

We can now construct the stack and register structure. State types in the Jinja
BV are the same as in the example in Fig. 21: values on the operand stack must
always contain a known type ty, values in the local variables may be of an unknown
type and therefore be unusable (encoded by Err). To handle unreachable code,
the BV needs an additional option layer: if None occurs in the well-typing, the
corresponding instruction is unreachable. On the HOL-type level:

types ty, = ty list ty; = ty err list
ty, = tys X ty; ty;’ = ty; option

The types of the stack and the local variables are ty, and ty;. We call ty; the
instruction type, and let the term state type refer to either of ty; or ty;’. It will
be clear from the context which of these is meant.
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The data flow analysis also needs to indicate type errors during the algorithm
(see also §4.4), so we arrive at ty;’ err for the semilattice construction.

Turning ty;’ err into a semilattice is easy, because all of its constituent types are
(err-)semilattices. The expression stacks form a semilattice because the supremum
of stacks of different size is Err; the local variables form a semilattice because their
number mazl is fixed:

stk-esl :: jum-prog = nat = ty, esl
stk-esl P mxs = upto-esl mazs (SemiType.esl P)

loc-sl :: jum-prog = nat = ty; sl
loc-sl P mzl = Listn.sl mxl (Err.sl (SemiType.esl P))

Stack and local variables are combined in a coalesced product via Product.esl and
then embedded into option and err to create the final semilattice for 's = ty;’ err:

sl i jum-prog = nat = nat = ty;’ err sl
sl P mas mal = Err.sl (Opt.esl (Product.esl (stk-esl P mzs) (Err.esl (loc-sl P mal))))

It is useful below to have special notation <’ for the ordering on ty;".

Combining the theorems about the various (err-)semilattice constructions in-
volved in the definition of sl (starting from Theorem 4.12; using Lemmas 4.1 to
4.9), it is easy to prove

COROLLARY 4.13. If P is well-formed, then sl is a semilattice. Its order
(written le P mxs maxl) satisfies the ascending chain condition:

wf-prog - P = semilat (sl P mas mal)
wf-prog - P = acc (le P mxs maxl)

4.7 Applicability and Effect Instantiated

In this section, we instantiate app and eff from §4.4 for the instruction set of the
Jinja VM. As for the source language we have divided the definitions into one part
for normal and one part for exceptional execution.

Since the BV verifies one method at a time, we can see the context of a method
and a program as fixed for the definition. The context consists of the following
values:

P jum-prog the program,

C' :: cname the class the method we are verifying is declared in,
mas :: nat maximum stack size of the method,

mal :: nat size of the register set for local variables,

Ts :: ty list types of the parameters of the method,

T, =ty return type of the method,

is  :: instr list  instructions of the method,

xt :: ex-table  exception handler table of the method.

The context variables are proper parameters of eff and app in the Isabelle for-
malisation. We treat them as global here to spare the reader endless parameter
lists in each definition. Formally, we use Isabelle’s locale mechanism to hide these
parameters in the presentation. Ballarin [2003] describes locales in detail.
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app; :: instr = pc = ty; = bool

app; (Load n) pc (ST, LT) = (n < |[LT| A LTjy,) # Err A [ST| < mas)

app; (Store n) pc (T-ST, LT) = (n < |LT))

Push v) pc (ST, LT) = (|ST| < mas A typeof v # None)

app; (New C) pc (ST, LT) = (is-class P C A |ST| < mas)

app; (Getfield F C) pc (T-ST, LT) = (3Ty. P+ Csees F:Ty in C AP+ T < Class C)

appi

(
(
(
(
(
(

app; (Putfield F C) pc (T1-T2-ST, LT) =
(3Tf. PF Csees F:Tyin CANPF Ta2 < Class C ANPF Ty < Ty)
app; (Checkcast C) pc (T-ST, LT) = (is-class P C A is-refT T)
app; (Invoke M n) pc (ST, LT) =
(n < |ST| A

(STp # NT —

(3CD Ts Tm.

STy, = Class C AN P &= Csees M: Ts—T = m in D A P I rev (take n ST) [<] Ts)))

app; Return pc (T-ST, LT) =P+ T < T,
app; Pop pc (T-ST, LT) = True
app; IAdd pc (T1- T2 ST, LT) = (T1 = T2 N T1 = Integer)
app; (Goto b) pc s = (0 < int pc + b)
app; CmpEq pc (T1-T2-ST, LT) = (T1 = T2 V is-refT T1 A is-refT T2)
app; (IfFalse b) pc (Boolean - ST, LT) = (0 < int pc + b)
app; Throw pc (T - ST, LT) = is-refT T

app; © pc T = False
Fig. 23. Applicability of instructions.

4.7.1  Normal Ezecution. We begin with the definition of applicability for nor-
mal execution. The intermediate function app;, defined in Fig. 23, works on ty;, app
will later lift it to ty;’. The definition is parallel to check-instr in §3.3, it just works
on types instead of values. The definition is smaller than the one of check-instr
because some of the conditions cannot be expressed at the type level alone. These
conditions are the ones that access the heap or the frame stack (most notable in the
Getfield, Putfield, and Return instructions). It will be the responsibility of the
type safety proof to show that the BV still manages to guarantee that all checks in
the defensive machine are successful.

Let’s take a closer look at the IAdd example again:

app; IAdd pc (T1-To- ST, LT) = (T1 = Ta N T1 = Integer)

This is completely parallel to the defensive machine. The pattern on the left hand
side ensures that there are at least two elements on the stack, and the right hand
side requires that they both are integers.

The non-exceptional effect of instructions eff; is equally simple. First, we calcu-
late the successor program counters in Fig. 24, after that, the effect of the instruc-
tion on the type level in Fig. 25.

The successors are easy, most instructions simply proceed to pc + 1. The relative
jumps in IfFalse and Goto use the mat and int functions to convert the HOL-
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Succs ::

succs (IfFalse b) T pc

succs (Goto b) T pc

succs (Invoke M n) T pc

succs Return 7 pc
succs Throw 7 pc
succs 1 T pc

Fig. 24.

effi it instr = ty; = ty;

instr = ty; = pc = pc list

[pc + 1, nat (int pc + b)]

[nat (int pc + b)]

= (if (fst T)jn) = NT then [] else [pc + 1])
(

I
= [pc + 1]

Successor program counters for the non-exceptional case.

effi (Load n) (ST, LT) = (ok-val LTy - ST, LT)

eff; (Store n) (T ST, LT) = (ST, LT[n := OK T))

effi (Push v) (ST, LT) = (the (typeof v)-ST, LT)
effi (New C) (ST, LT) = (Class C-ST, LT)

eff i (Getfield FF C) (T-ST, LT) = (snd (field P C F)-ST, LT)
eff; (Putfield F C) (T1-T2-ST, LT) =

eff i (Checkcast C) (T ST, LT)
eff; Pop (T-ST, LT)

eff IAdd (T1-T2-ST, LT)

effi (Goto n) s

eff i CmpEq (Tl - To- ST, LT)
eff; (IfFalse b) (T1-ST, LT)
eff i (Invoke M n) (ST, LT)

Class C- ST, LT)
ST, LT)
Integer - ST, LT)

Boolean - ST, LT)
ST, LT)
let Class C = STl,;

(
(
(
(
(
(ST, LT)
(
(
(
(
(

(< o Ty, -) = method P C M
in (Ty-drop (n + 1) ST, LT)

Fig. 25. Effect of instructions on the state type.
types nat to int and vice versa. Return and Throw have no successors in the
same method (for the non-exceptional case). The Invoke n M instruction has no
normal successor if the the stack at position n contains NT—it will always throw
a NullPointer exception in this case. It is different from Getfield and Putfield,
because they have enough information in the instruction itself to determine the
effect. Invoke on the other hand must rely on computed information at ST, to
determine the return type of the method. In the Java VM, the Invoke instruction
contains the static class of the method (and is thus easier to handle).

The effect eff; on ty; is shown in Fig. 25. The destructor ok-val is defined by
ok-val (OK z) = x.

The IAdd instruction is in this case:

eff; IAdd (T1- T ST, LT) = (Integer- ST, LT)

Again, as befits an abstract interpretation, the definition is completely parallel to
the operational semantics, this time to exec-instr of the aggressive machine.

The next step is combining eff; and succs:

norm-eff i instr = pc = ty; = (pc x ty;’) list
norm-eff i pc T = map (Apc’. (pc’, |eff; i 7])) (succs i T pc)
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is-relevant-class :: instr = 'm prog = cname = bool

is-relevant-class (Getfield F D) P C = P F NullPointer <* C
is-relevant-class (Putfield F D) P C = P + NullPointer <* C

is-relevant-class (Checkcast D) P C = P+ ClassCast <* C
is-relevant-class (New D) P C = P+ OutOfMemory <* C
is-relevant-class Throw P C = True

is-relevant-class (Invoke M n) P C = True

is-relevant-class i P C False

is-relevant-entry :: 'm prog = instr = pc = ex-entry = bool
is-relevant-entry P i pc e = let (f, t, C, h, d) = e in is-relevant-class i P C A pc € {f..<t}

relevant-entries :: 'm prog = instr = pc = ex-table = ex-table

relevant-entries P i pc = filter (is-relevant-entry P i pc)

Fig. 26. Finding relevant exception handlers.

The result is a list of edges in the control flow graph determined by succs, each
of them marked with the result of eff;. As we use norm-eff only for reachable
instructions below, we can safely mark the successors as reachable with |_].

We now have two functions app; and norm-eff describing normal execution in
the bytecode verifier. The next section turns to exceptions.

4.7.2 FExceptions. Abstractly, exceptions merely add more edges to the control
flow graph. In the JVM (Jinja as well as Java), these edges must all lead to the
start of the exception handler that is relevant for the current instruction. Only at
runtime this relevant handler is uniquely determined, statically we must consider
a number of handlers, because relevance of a handler depends on which exception
was raised. The Invoke instruction for instance may raise a NullPointer exception,
or it may propagate an exception up that was thrown in the invoked method. For
each of these cases a different handler might be relevant. As for the conditional
branch instruction, the bytecode verifier simply checks all of them.

Thus, the first thing we need to do is determine which handlers might be relevant
for an instruction. Figure 26 shows this in three stages: relevant-class i P C is
True iff 7 can raise an exceptions of class C, is-relevant-entry P i pc e is True iff
entry e in the exception table might match instruction i at position pc, and finally
relevant-entries P i pc xt is the list of exception table entries that are relevant for
instruction ¢ at position pc.

For applicability in the exception case we require that the class name mentioned
in the exception handler is indeed a declared class, and that the stack is between
mzs and the number d of entries the exception handler expects.
zept-app i instr = pc = ty; = bool
zept-app i pe (ST, LT) =
Y (f, t, C, h, d)Eset (relevant-entries P i pc xt). is-class P C N d < |ST| A d < mas

The effect of instructions in the exception case is equally simple. Each edge leads
to the start of the exception handler, and the local variables are unchanged. We cut
down the operand stack to d elements of the current stack, and push the exception
object on top.

zept-eff i instr = pc = ty; = (pc X ty;’) list
zept-eff i pc (ST, LT) =
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map (\(f, t, C, h, d). (h, |(Class C -drop (|ST| — d) ST, LT)|)) (relevant-entries P i pc xt)

4.7.3 Combining Normal and FExceptional Ezecution. Combining the normal
and exceptional case, we can now build the full effect function: if an instruction is
unreachable, it has no outgoing edges; if it is reachable the overall effect is simply
an append of the normal and the exception case.

eff i instr = pc = ty;' = (pc x ty;’) list
eff i pc t = case t of None = [| | | 7] = norm-eff i pc T Q zcpt-eff i pc T

For applicability we have: an instruction is applicable if it is unreachable (then
it can do no harm) or if it is applicable in the normal and in the exception case.
Additionally, we require that the pc does not leave the instruction sequence.

app :: instr = pc = ty;’ = bool

app i pct =
case t of None = True
| I7] = app; i pc T A zcpt-app i pc T A (Y (pe!, T')Eset (eff i pc t). pc’ < |is|)

4.8 Well-typings

Having defined the semilattice and the transfer function in §4.6 and §4.7, we show
in this section how the parts are put together to get a definition of well-typings for
the Jinja VM.

The abstract framework gives us a predicate wi-app-eff (§4.4) describing well-
typings 7s :: ty;’ list as method types that fit an instruction sequence. To obtain
type-safety and an executable bytecode verifier, we additionally require a start con-
dition for instruction 0 (at method invocation) and some side conditions explained
below.

The operational semantics of Invoke tells us the start condition at method in-
vocation: the stack is empty, the first register contains the this pointer (of type
Class ("), the next registers contain the parameters of the method, and the rest of
the registers are reserved for local variables (which do not have a value yet). Note
that the definitions are still in the context of a fixed method as defined in §4.7, so
(" is the class to be verified, Ts are the parameters, and mzly the number of local
variables (which is related to mazl of §4.7 by mal = 1 + |Ts| + malp). The <’ is
the semilattice order on ty;’ of §4.6.

wt-start 7s = P = [([], OK (Class C")-map OK Ts Q replicate malo Err)] <’ Tspp

The method type 7s is a well-typing for a method if it satisfies wt-method. To
define it, we instantiate wt-app-eff from the framework with Apc 7. app is;p.) pc 7
for the abstract app, and Apc 7. eff isj,, pc T for the abstract eff.

wt-method 75 =
(is # [] A |rs| = mpc A OK ‘ set 7s C states P mas mal A wt-start Ts N wt-app-eff Ts)

The states are the carrier set of the semilattice. Remember that the method type
7s does not contain the Err layer of the semilattice, hence we take the image
OK ¢ set Ts of set 7s under OK. For well-typedness wt-method also requires that
the method contains at least one instruction, and that the method type covers all
instructions.
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It is occasionally useful in the proofs and also for the compiler below, to define
the notion of an instruction being well-typed. This is just the matrix of the V p<|7s|
in wt-app-eff (c.f. §4.4). Since it will be used outside the fixed method context of
this section, it has more parameters.

P, T, mxs,mpc,xt = i,pc :: T8 =

app i pc Tspe A (Y (pe!, T)€Eset (eff i pc Tsppey). P E T < Tsppen)

The notation P,T,.,mxs,mpc,xt b i,pc :: T7s is read as: in the context of program P,
return type T',., maximum stack size mzs, number of instructions mpc and exception
table zt, the instruction 7 at position pc is well-typed w.r.t. method type 7s::ty;’ list.

It remains to lift well-typings from methods to programs. Well-typings of pro-
grams are functions ® :: typ with

types typ = cname = mname = ty;’ list

These functions return a well-typing for each class and method in the program. A
Jinja VM program is well-formed according to ® if each method body is well-typed.
At this point, the full parameter list of wi-method becomes visible.

wf-juvm-proggp =
wf-prog (AP C (M, Ts, Ty, mzs, mzlo, is, at). wt-method P C Ts T, mzs mzly is ot (P C M))

wf-jum-prog P = 3®. wf-jum-proge P

4.9 An Executable Bytecode Verifier

In §4.8 we defined well-typings for the Jinja VM. This section shows how to instan-
tiate the type inference algorithm of §4.5 to get an executable bytecode verifier for
Jinja.

With the semilattice as defined in §4.6 and the transfer function of §4.7, and
still within the same method context as for wt-method, we only need to provide the
correct start value to Kildall’s algorithm to get an executable BV:

wt-kildall =

is # [ A

(let 70 = [([], [OK (Class C")] @ map OK Ts @ replicate mzlo Err)];
780 = OK T7¢ - replicate (|is] — 1) (OK Nomne)

in ¥ n<l|is|. (kildall Ts0)(n) # Err)

Position 0 in 7s¢ is the same as the start value in wt-start. Since we know nothing
yet about the positions greater than 0, we fill in the bottom element OK None for
those.

Lifting to full programs and filling in the method context is the same as for
wt-method:
wf-jvm-progi P =
wf-prog (AP C' (M, Ts, Ty, mzs, mzlo, is, xt). wi-kildall P C' Ts Tr mzs mzly is xt) P
This definition only gives us a working BV if step meets the conditions of Theorem
4.11. We have shown that the transfer function step, built from app and eff as
described in §4.4 and §4.7, is monotone, bounded, and type preserving (w.r.t. states
and |is]). Albeit large (a case distinction over the instruction set), the proof that
step is monotone and type preserving is easy and mostly automatic. That step is
bounded is checked explicitly by the app component of step.

Using Theorem 4.11, we have then proved the following:
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THEOREM 4.14. The executable BV is sound and recognises all well-typed
programs:

wf-jvm-prog P = wf-jvm-prog P

4.10 Type Safety

This section is about the type safety of the well-typing specification above. The
type safety theorem states that the bytecode verifier is correct, that it guarantees
safe execution. If the bytecode verifier succeeds and we start the program P in
its canonical start state (§3.3), the defensive Jinja VM will never return a type
error. With Theorem 3.1, this implies that the checks of the defensive machine are
redundant and the aggressive machine can be used safely instead.

THEOREM 4.15. If C' is a class in P with a method M, formally
Pt Csees M: [|[-T = b in C, and if wf-jum-prog P, then

P + Normal (start-state P C M) 2% o' = o' # TypeError

To prove this theorem, we set out from a program P for which the bytecode
verifier returns true, i.e., for which there is a ® such that wf-jum-proge P holds.
The proof builds on the observation that all runtime states o that conform to
the types in ® are type safe. For o conforms to ®, we write P,® + o4/. For
P,® F o4/ to be true, the following must hold: if in state o execution is at position
pc of method M in C, then the state type (& C M), must be of the form [7],
and for every value v on the stack or in the register set the type of v must be a
subtype of the corresponding entry in its static counterpart 7. This is the essence
of the conformance relation. To show that it is invariant during execution, it needs
to be strengthened. We show the complete formal definition of conformance below,
but to avoid getting bogged down in detail we continue to sketch the general proof
outline first. For this strong conformance we have shown that it is invariant during
execution if the program is well-typed.

LEMMA 4.16. If wf-jum-progey P and P+ o 2™ ¢’ and P,® - o \/ then
PoF o’y

The proof is by induction on the length of the execution and then by case distinction
on the instruction set. For each instruction, we conclude from the conformance of
o together with the app part of wf-jum-prog that all assumptions of the operational
semantics are met (like “the stack is not empty”). Then we execute the instruction
and observe that the new state o’ conforms to the corresponding 7’ in eff pc .
This invariance lemma corresponds to subject reduction in a traditional small step
semantics.

Lemma 4.16 is still not sufficient for type safety, though: it might be the case
that start P C' M does not conform to ®. We have shown that this is not so.

LEMMA 4.17. If wf-jom-proge P and P & C sees M: [| =T = m in C then
P.®  start-state P C M /.

Lemmas 4.16 and 4.17 together say that all states that occur in any execution of
program P conform to ® if we start P in the canonical way.
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The last step in the proof of Theorem 4.15 is Lemma 4.18. It corresponds to
progress in a traditional small step semantics.

LEMMA 4.18. An execution step started in a conformant state cannot produce
a type error in well-typed programs:

If wf-jum-proge P and P,® b o / then execy P o # TypeError.

The proof of Lemma 4.18 is by case distinction on the current instruction in o.
Similar to the proof of Lemma 4.16, the conformance relation together with the
app part of wf-jum-prog ensures check-instr in execy returns true. Because we
know that all states during execution conform, we can conclude Theorem 4.15:
there will be no type errors in well-typed programs.

We now show the formal definition of the conformance relation between dynamic
Jinja VM states and static states (types) in the Jinja BV.

For the proof of the invariance lemma (Lemma 4.16) to go through, the intuitive
notion of conformance we have given above is not sufficient, the formal conformance
relation P,® - o4/ is stronger. It describes in detail the states that can occur during
execution, the form of the heap, and the form of the method invocation stack.

We begin by lifting the single value conformance P,h F v :< T of §2.9 to stack
and local variables. For the stack this is just the pointwise lifting of :< to lists. As
usual, we write P,h F vs [:<] ST for this. For the local variables we first need to
treat the Err level:

Phtwv:<t E=case Eof Err = True| OK T = Phtv:< T

Lifting to lists P,h F vs [:<t] LT is then canonical again.
A call frame conforms if its stack and register set conform, and if the program
counter lies inside the instruction list.

conf-f P h (ST, LT) is (stk, loc, C;, M, pc) =
P.h b stk [:<] ST N P,h + loc [:<7] LT A pc < |is]

This is still not enough. For proving the Return case, we also need information
about the structure of the call frame stack. The predicate conf-fs below describes
the structure of the call frame stack beneath the topmost frame. The parameters
My, ng and Ty are name, number of parameters and return type of the method in
the topmost frame.

conf-fs P h ® Mo no To [] = True

conf-fs P h ® Mg no To ((stk, loc, C, M, pc)-fs) =
(38T LT Ts T mas mzlo is xt.
(® C M) = (ST, LT)| A P = C sees M: Ts—T = (mas, mzlo, is, at) in C A
(3D Ts'" T" m D'.
iS[pe] = Invoke Mo no A ST(,q) = Class D A P = D sees Mo: Ts'—T' = m in D' A
PF To< T A
conf-f P h (ST, LT) is (stk, loc, C, M, pc) A
conf-fs P h ® M |Ts| T fs)

In the definition above, a list of call frames conforms if it is empty. If it is not empty,
then for the head frame the following must hold: the state type (® C' M), for the
current instruction must denote a reachable instruction; the call frame must belong
to a defined method; it must be halted at the Invoke instruction which created the
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call frame above (this is not easily expressed without access to something like a call
history, but it is enough to demand that the M and n in Invoke M n are M, and
no, and that the return type of a lookup on the class D in ST[,,; conforms to T,
the return type the frame above expects); finally, the current frame and the rest of
the call frame stack must conform.

The following is the top level conformance relation between a state and a program
type. The first two cases are trivial, the third case requires a conformant heap
(P h /), contains special handling for the topmost call frame and delegates the
rest to conf-fs. The topmost frame is special because it does not need to be halted
at an Invoke instruction. The topmost frame must conform and the current state
type must denote a reachable instruction. The method lookup provides conf-f and
conf-fs with the required parameters.

P,® + (None, h, []) v/ = True

Po+ (lz], by fs) vV = (fs =)

P,® + (None, h, (stk, loc, C, M, pc)-fs) / =

(3Ts T mas mzlp is at s.
PFEh+ANPFE Csees M: Ts—T = (mas, malo, is, at) in C A (P C M) = 8] A
conf-f P h s is (stk, loc, C';, M, pc) N
conf-fs P h ® M |Ts| T fs)

Fig. 27 is a snapshot of the Jinja VM state in the middle of a typical program
execution. On the left there is the Jinja VM with its frame stack and heap, on the
right there are the method types the BV predicted for this program. The program
declarations appear on the lower right side in the static part.

The state on the left in Fig. 27 conforms to the static type information on the
right: all objects in the heap conform, because the values of the field F' (declared
in class B) are all of type Class A (Null is of type Class A, and the address Addr 0
points to an object of Class B which is a subclass of Class A). All frames but the
topmost one are halted at the Invoke instruction that created the next frame. The
dynamic operand stacks conform to the static ones, because their length is the same
and all values have conforming type. The topmost frame conforms, too, because
its pc points to a valid instruction (Getfield F' B), and the value on the dynamic
operand stack is an address that points to an object of class C.

4.11 Related Work

The bytecode verifier presented here is a simplified version of the one by Klein [2003]
which in turn builds on the work by Nipkow [2001] and Pusch [1999]. Most closely
related to these is the work by Barthe and Dufay [2004] who use the Coq system
for a formalisation of the JavaCard virtual machine and its BV. They formalise the
full JavaCard bytecode language, but with a simplified treatment of some features
like bytecode subroutines.

The ASM formalisation of Stark et al. [2001] contains almost all of the Java
BV’s features and is executable. It does not use mechanical support or checking
for its proofs.

Paper formalisations of Java bytecode verification begin with Stata and Abadi
[1998] who give a first formal type system for the JVM. Freund and Mitchell [2003]
and Freund [2000] build on this type system and extend it to a substantial subset
of the JVM.
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JVM BV
( Frame Stack " Method Types A
Class C, Method m3 Class C, Method void m3()
stack registers pc
adarz | | | D > GetField F B ¢ [Class C]. [..J]
Class B, Method m2 Class B, Method void m2()
stack registers pc
:l D » Invoke m3 0 I [Class Cl.[...]
Class A, Method m1 Class A, Method int m1(int)
stack registers pc
[Adar 1] | | | |:|, |
® [nvoke m2 0
[ [Class BJ, [...]ﬂ
Class A, Method m1 ® Invoke m1 1 U [Integer, Class A], [...])J
stack registers pc
[ mgszadwro| | | D
N J \ J
0: (B, {(BF) > Null}) Qlass 1A.( C}I\a’s:s B extends A {
1: (G, { (BF) > Null}) } mmi - void m2( { ...}
2: (C,{(B,F) +> Addr0}) )
8 Class C extends B {
void m3() { ... } )
Heap ) Declarations
Fig. 27. Jinja VM execution snapshot.

Working towards a verified implementation in SPECWARE, Coglio et al. [2000]
have specified and analysed large portions of the bytecode verifier. Goldberg [1998]
rephrases and generalises the overly concrete description of the BV given in the
JVM specification [Lindholm and Yellin 1999] as an instance of a generic data flow
framework. Qian [2000] also proves the correctness of an algorithm for turning
his type checking rules into a data flow analyser. However, his algorithm is still
quite abstract. The formulation of the bytecode verification algorithm as a direct
instance of an abstract data flow framework first appears in the work by Nipkow
[2001] and is refined by Klein and Nipkow [2003] and Klein [2003].

There is an interesting variant of type inference for the JVM, namely lightweight
bytecode verification [Rose and Rose 1998; Rose 2002; 2003]. It uses a certificate to
reduce time and space usage during type inference. For space reasons we have left it
out here, but lightweight bytecode verification fits in nicely with our formalisation of
the VM type system [Klein and Nipkow 2001]. Moreover, it can be formulated as an
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inference algorithm in the same abstract framework that we use for Kildall’s data
flow analyser [Klein 2003]. Other variations of lightweight bytecode verification
algorithms are surveyed by Leroy [2003].

There is a large body of literature on bytecode verification that concentrates on
special language features like subroutines [Coglio 2004; Klein and Wildmoser 2003],
object initialisation, dynamic class loading, thread monitors and access control.
There are also a number of more or less radically different approaches to type
inferences like model checking, reducing the BV to Haskell type inference, and
using ML-style polymorphism. We refer to the overview articles for these.

5. COMPILER

Our compiler operates in two stages: first it replaces variable names in expressions
by indices (§5.2), then it generates the actual JVM code (§5.3). Once we have
lifted compilation of expressions to the level of programs (§5.4) we show that both
compiler stages preserve the big-step semantics (§5.5 and §5.6). Finally we show
that not only the semantics, but also the well-typedness of expressions and well-
formedness of programs is preserved by compilation, i.e. that the compiler produces
well-typed JVM code (§5.8 and §5.9).

5.1 Intermediate Language

The intermediate language of expressions is called expr; and is identical to expr,
except that all variable names are replaced by natural numbers, except in field
access and field assignment. To avoid duplication, in Isabelle/HOL we have defined
one parameterised data type ‘a exp, and ezpr and expr; are abbreviations for the
instances vname exp and nat exp. The type of J; programs is defined by

types Ji-prog = expry prog

In contrast to J-prog, methods no longer need parameter names because they have
been replaced by numbers.

5.1.1 Big step semantics. The motivation for our choice of intermediate lan-
guage is that its semantics is based on almost the same state space as the JVM:
local variables are no longer stored in a map but in a fixed length list of values, i.e.
in an array. Its big step semantics is of the form Pt (e,s) = (e’,s’) where P ::
J1-prog, e, e’ :: expry and s, s’ :: heap x wval list.

Most of the evaluation rules for expr, are the same as the ones for ezpr. The ones
that differ are shown in Fig. 28. The modifications in the rules for variable access,
variable assignment and exception catching simply reflect the difference between a
map and an array. Note that the rules are defensive in that they require the index
to be within the bounds of the array. The rule for blocks expresses that all local
variables are pre-allocated and blocks are irrelevant for the semantics. However,
they are not irrelevant for the type system because of the types of local variables.

The method call rule has changed because the state in which the body is evaluated
needs to be initialized with an array (Isy’). The initial section of that array contains
the address of the object and the parameters, the remainder is initalized with an
arbitrary value, just as in the semantics of Invoke in the JVM (see §3.2). To find
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s = v i < |ls]
Pty (Var i,(h, Is)) = (Val v,(h, ls))

P 1 (e,s0) = (Val v,(h, Is)) i < |ls| Is' = Is[i := v]
Pl (i:=es0) = (unit,(h, ls))

Pt (e1,s0) = (Throw a,(h1, Is1)) hi1 a= (D, fs)]
P+D=*C 1 < |ls1] Py {ea,(h1, ls1[i := Addr a])) = {(e2’,(ha, ls2))

P k1 (try e; catch (C i) e2,50) = (ea’,(h2, ls2))

P ki {(e,50) = (e;51)
Py {i:T; e},s0) = (e',51)

P b1 {e,s0) = (addr a,s1) P 1 (es,s1) [=] (map Val vs,(ha, ls2))
ho a = |(C, fs)] P+ Csees M: Ts—T = body in D
|vs| = | T's| Iso’ = Addr a-vs @ replicate (maz-vars body) arbitrary

P <body,(h2, lSQl)> = <€/,(h3, ng))
P 1 (e.M(es),s0) = (e’,(h3, ls2))

Fig. 28. Evaluation rules for ezpr; differing from those for expr

Var j) © = True

eF{D})i=Bei

ji=e)i=Besi

(e1.F{D} :=e2)i=(Be1 i NBezi)
(e.M(es))i=(BeiABsesi)
{iT;e}i=(G=j7ABe(i+1))

(e15 e2)i=(Bei i ADBeai)

(if (e) e1 elseez)i=(BeiABei i NBe2i)
(throw e)l—Bel

(while (e) ¢) i = (B ei ABci)

(try e1 catch (Cj)es)i=(BeriNi=j5ABes (i +1))
Bs [] i = True

Bs (e-es)i=(BeiABsesti)

TEETTTTTTTTITTITIT®

Fig. 29. Definition of B

out how many local variables are needed, maz-vars (Fig. 30) computes the maximal
depth of nested local variables. However, the depth may say nothing about the
actual indices, for example in {29:To; {17:T1; e}}. But the layout of lsy’ assumes
the two are related: all indices in body must be below 1 + size vs + maz-vars body.
This assumption is justified because, as we will see later on, stage 1 of the compiler
produces intermediate expressions with the following property: starting from some
given index, say 4, indices increase by 1 for each nested block. For example, {5:Tq;
{6:T1; e1}; {6:T2; ea}} is fine, but {6:T1; {5:To; e}}, {5:To; {7:T2; e}} and
{6:T1; {7:To; e}} are not. This property is formalized by B in Fig. 29 and could
be called an inverse de Bruijn numbering scheme.
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maz-vars (new C) =0

maz-vars (Cast C e) = maz-vars e

maz-vars (Val v) = 0

maz-vars (e1 <bop> e2) = maz (maz-vars e1) (maz-vars e2)

maz-vars (Var V) =0

maz-vars (V 1= e) = maz-vars e

maz-vars (e.F{D}) = maz-vars e

maz-vars (e1.F{D} := e2) = maz (maz-vars e1) (maz-vars ez)

maz-vars (e.M(es)) = maz (maz-vars e) (maz-varss es)

maz-vars {V:T; e} = maz-vars e + 1

maz-vars (e1; 62) = maz (maz-vars e1) (maz-vars ez)

maz-vars (if (e) e1 else e2) = mazx (maz-vars e) (maz (maz-vars e1) (maz-vars ez))
maz-vars (while (b) e) = maz (maz-vars b) (maz-vars e)

maz-vars (throw e) = maz-vars e

maz-vars (try e; catch (C V) e2) = maz (maz-vars e1) (maz-vars ea + 1)
maz-varss [| = 0

maz-varss (e-es) = maz (maz-vars e) (maz-varss es)

Fig. 30. Definition of maz-vars

E[z] =T i < ‘E|
P,EtFyVari:: T

Ey=T i < |E| PEFiex T PFT' LT
P,EFq i:=e: Void

is-type P T PEQ[T)Frex=T’
P,Ety {i:T; e} == T’

PEFrier =T P,E @ [Class C| 1 ea = T is-class P C
P,E b1 try e catch (C'4) ex = T

Fig. 31. Typing rules for expr; differing from those for expr

5.1.2  Type system. Again we replace a map by a list: in the judgment P,E
e : T, the environment E is now of type ty list (and P :: J1-prog). Most rules for
this type system are identical to the ones for expr. The ones that have changed are
shown in Fig. 31. They also rely on the inverse de Bruijn numbering scheme by
ignoring the 4 in {::T; e}.

5.1.3 Well-formedness. Well-formedness of J; programs is essentially well-
formedness of Jinja programs (§2.8) where the conditions on the parameter names
have been dropped and inverse de Bruijn numbering is required:

wf-J1-mdecl P C (M, Ts, T, body) =
(3T". P,Class C-Ts 1 body :: T" NP+ T'< T) AD body [{..|Ts|}| A B body (|Ts| + 1)

wf-J1-prog = wf-prog wf-J1-mdecl

In the definition of D (§2.7) we pretended that it operates on expr, but in reality
it is defined on the polymorphic type ‘a ezp and hence works on ezpr; as well.
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compE1 Vs (new C) = new C
compE1 Vs (Cast C e) = Cast C (compE1 Vs e)
compE1 Vs (Val v) = Val v
compE1 Vs (e1 <bop> e2) = compE1 Vs e1 <bop> compE1 Vs ea
compE1 Vs (Var V) = Var (index Vs V)
compE1 Vs (V :=e) = index Vs V := compE1 Vs e
compE1 Vs (e.F{D}) = compE1 Vs e.F{D}
(

compE1 Vs (e1.F{D} := e2) = compE1 Vs e1.F{D} := compE1 Vs e2
compE1 Vs (e.M(es)) = compE1 Vs e.M(compEs1 Vs es)

compE1 Vs {V:T; e} = {|Vs|:T; compE1 (Vs Q [V]) e}

compE1 Vs (e1; e2) = compE1 Vs e1; compE1 Vs es

compE1 Vs (if (e) e1 else ez) = if (compE1 Vs e) compE1 Vs ey else compE1 Vs es
compE1 Vs (while (e) ¢) = while (compE1 Vs e) compE1 Vs c
compE1 Vs (throw e) = throw (compE; Vs e)

compE1 Vs (try e1 catch (C V) e2) =

try compE1 Vs e1 catch (C |Vs|) compE1 (Vs @ [V]) ez

compEs1 Vs [] = ||

compEs1 Vs (e-es) = compE1 Vs e-compEs1 Vs es

Fig. 32. Definition of compE

5.2 Stage 1: Names to Indices

The translation from expr to expri is parametrised by the list of variables declared
on the path from the root of the expression to the current subexpression. The
index of a variable is the position of its rightmost occurrence in that list: in
[A, B, A, C, D], A has index 2, B index 1, and C index 3. The formal definition

index [ y =0
index (z-xs) y = (if x = y then if ¢ € set xs then index zs y + 1 else 0 else index zs y + 1)

reveals that the index of an element not in the list is the length of the list. Func-
tion compE1 :: vname list = expr = expr; (Fig. 32) traverses an expression and
translates variable names via index.

5.3 Stage 2: Code Generation

Code generation comprises the generation of an instruction list and of an exception
table. Generating the instruction list (function compEs :: expry = instr list in
Fig. 33) is straightforward since we are already on the level of indices rather than
names. The only case that may need some explanations is try-catch. We compile the
code as suggested in the official JVM specification [Lindholm and Yellin 1999]: first
the try block, then a jump over the rest to the end, then (and this is the entry point
for the exception handler) the exception reference is stored in the local variable, and
finally the catch block. Remember that int is the injection from naturals (produced
by the length function) into integers (required by branch instructions).

Producing the code is simplified because branch instructions are relative. Hence
the compiler does not need to compute absolute address. The exception table,
however, contains absolute addresses. Hence its generation (function compzEs ::
expr1 = pc = nat = ex-table in Fig. 34) requires the current program counter
as a parameter. The final parameter is the current size of the stack. Function
compzE traverses the expression top-down and left-to-right, collecting the handler
information from all try-catch constructs it encounters, while keeping track of the
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compE2 (new C) = [New C]

compE> (Cast C e) = compE2 e @ [Checkcast (]

compEg (Val v) = [Push v]

compE> (e1 <bop> e2) = compE2 e1 @ compE2 ex @ (case bop of = = [CmpEq] | + = [IAdd])

compEg (Var i) = [Load 4]

compE> (i := e) = compE2 e @ [Store i, Push Unit]

compEg (e.F{D}) = compE3 e @ [Getfleld F D]

compE> (e1.F{D} := e3) = compE2 e1 @ compEg ex @ [Putfield F D, Push Unit]

compE2 (e.M(es)) = compE2 e Q compEsy es Q [Invoke M |es||

compEs {i:T; e} = compE> e

compE2 (e1; e2) = compE2 e1 Q [Pop] @ compE> eo

compE> (if (e) e1 else ez) =

(let cnd = compE2 e; thn = compEs e1; els = compE2 eg; test = IfFalse (int (|thn| + 2));
thnex = Goto (int (|els| + 1))

in cnd Q@ [test] @Q thn Q [thnez] @ els)

compE> (while (e) ¢) =

(let cnd = compE2 e; bdy = compE> c; test = IfFalse (int (|bdy| + 3));
loop = Goto (— int (|bdy| + |cnd| + 2))

in cnd Q@ [test] @ bdy Q@ [Pop] @ [loop] @ [Push Unat])

compE> (throw e) = compE2 e @ [Throw]

compE> (try ei catch (Ci) ez) =

(let catch = compE2 ez in compE2 e1 @ [Goto (int |catch| + 2), Store i] @ catch)

compEsz [] = ]

compEsa (e-es) = compFE2 e @ compEsa es

Fig. 33. Definition of compE2

current program counter (by adding the size of the compiled code to the left to it)
and the current stack size (by incrementing it suitably). Each try-catch generates
one entry in the exception table. It contains the stack size d before execution
of the try-catch: that is the stack size we must return to when an exception is
encountered and execution continues with the catch block. The precise addresses
in this exception table entry are of course implicitly determined by the layout of
the code produced by compEs. It is crucial that this entry is placed behind the
exception tables belonging to the try and catch blocks: because the JVM searches
exception tables from the left, it will only find this entry if none of the more directly
enclosing handlers match. At least that is the intuition. The proof follows below.

5.4 Program Compilation

Lifting expression compilation to the level of programs is easy: simply replace all
method bodies by their compiled version. This is defined generically:

compP :: ('a = 'b) = 'a prog = 'b prog

compP f = map (compC f)

compC :: ('a = 'b) = 'a cdecl = 'b cdecl
compC f = X(C, D, Fdecls, Mdecls). (C, D, Fdecls, map (compM f) Mdecls)

compM :: (‘a = 'b) = 'a mdecl = 'b mdecl
compM f = X(M, Ts, T, m). (M, Ts, T, fm)

Now we can lift the two compiler stages from expressions to programs:

compPy :: J-prog = J1-prog
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compzE> (new C) pc d = ]

compzEo (Cast C e) pc d = compzE2 e pc d

compzEo (Val v) pe d = ]

compzEo (e1 <bop> e2) pc d = compzEs e1 pc d Q@ compzE2 e (pc + |compEs e1]) (d + 1)
compzEo (Var i) pc d = ||

compzEo (i 1= €) pc d = compzE2 e pc d

compzEo (e.F{D}) pc d = compzE2 e pc d

compzEo (e1.F{D} := e2) pc d = compzE2 e1 pc d Q compzE2 e2 (pc + |compE2 e1]) (d + 1)
compzEo (e.M(es)) pc d = compzE2 e pc d @ compzEsa es (pc + |compE2 €|) (d + 1)
compzEo {i:T; e} pc d = compzE2 e pc d

compzEa (e1; e2) pc d = compzE2 e1 pc d Q compzEs ez (pc + |compE2 e1] + 1) d
compzEo (if (e) e1 else e2) pc d =

(let pc1 = pc + |compE2 €| + 1; pco = pc1 + |compE2 e1] + 1

in compzE2 e pc d Q compzE2 e1 pc1 d Q compzEo ez pea d)

compzEo (while (b) e) pc d = compzE2 b pc d @ compzEs e (pc + |compE2 bl + 1) d
compzEo (throw e) pc d = compzE2 e pc d

compzEo (try e1 catch (C1) e2) pc d =

(let pc1 = pc + |compE2 e1]

in compzE2 e1 pc d @ compzE2 ez (pe1 + 2) d Q [(pc, pe1, C, pe1 + 1, d)])
compzEsy [] pc d = ]

compzEsy (e-es) pc d = compzEo e pc d Q compzEss es (pc + |compEs e|) (d + 1)

Fig. 34. Definition of compzEs2
compP1 = compP (A(pns, body). compE1 (this - pns) body)

compPs3 :: J1-prog = jum-prog

compPo = compP compMba

compMby =

Abody. let ins = compE2 body @ [Return]; zt = compzE2 body 0 0
in (maz-stack body, maz-vars body, ins, xt)

Function compP; compiles each method body in the context of this and its parame-
ter names as the only local variables. Function compP5 compiles each method body
into the required 4-tuple of maximal stack size (Fig. 35), number of local variables,
instructions, and exception table.

The main compiler J2JVM is simply the composition of compP; with compPs.

5.5 Correctness of Stage 1

Although the translation from names to indices appears straightforward, formu-
lating its correctness is already a bit involved. We want to prove preservation of
the semantics, i.e. that an evaluation P + (e,(h, 1)) = (e/,(h/, I')) implies some
evaluation compP1 P b1 (compE1 Vs e,(h, ls)) = (compE; Vs e/,(b', Is)). Tt is
plausible that set Vs should be a superset of fv e and that [Vs [—] Is] should be
related to [. Equating them does not work because variables in Vs that have not
yet been assigned to will not be in dom [ — uninitialised variables again complicate
matters. Hence we have to settle for the weaker | C,, [Vs [—] ls] where

m1 Cm mo = VaEdom mi. mi1 a = m2 a

is defind for arbitrary maps. This relationship should be preserved, i.e. I’ C,,, [Vs
[—] Is'] should hold.
We are now ready for the main theorem:
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maz-stack (new C) =1
maz-stack (Cast C e) = maz-stack e
maz-stack (Val v) =

(
(
(

maz-stack (e1 <<bop>> e2) = maz (maz-stack e1) (maz-stack ez) + 1

maz-stack (Var i) =

maz-stack (i := e) = mam’-stack e

maz-stack (e.F{D}) = maz-stack e

maz-stack (e1.F{D} := e2) = maz (maz-stack e1) (maz-stack ez) + 1

maz-stack (e.M(es)) = maz (maz-stack e) (maz-stacks es) + 1

maz-stack {i:T; e} = maz-stack e

maz-stack (e1; e2) = maz (maz-stack e1) (maz-stack e2)

maz-stack (if (e) e1 else e2) = mazx (maz-stack e) (maz (maz-stack e1) (maz-stack ez))

maz-stack (while (e) ¢) = maz (maz-stack e) (maz-stack c)

maz-stack (throw e) = max-stack e

maz-stack (try ei catch (C i) e2) = maz (maz-stack e1) (maz-stack e2)

maz-stacks [| = 0

maz-stacks (e-es) = maz (maz-stack e) (1 + maz-stacks es)

Fig. 35. Definition of maz-stack

THEOREM 5.1. If wwf-J-prog P and P F (e,(h, 1)) = (e/,(h/, I)) and fve C
set Vs and | C,,, [Vs [—] Is] and |Vs| + maz-vars e < |ls| then 3ls’. compP; P
F1 (compE1 Vs e,(h, Is)) = (finy e ,(B/, Is")) NI Cy, [Vs [—] Is]].

First we examine the additional premises. Weak well-formedness is necessary for
method calls: in order to apply the induction hypothesis arising from the evaluation
of the method body, we need to establish an instance of fv e C set Vs, namely that
the only free variables in the body are this and the parameters. The premise
| Vs| + maz-vars e < |ls| ensures that Is is large enough to hold all local variables
needed during the evaluation of e. In the conclusion, compE; Vs e’ has been
replaced by finy e’ where finy :: expr = expry is the “identity” on final expressions:
finy (Val v) = Val v and fin; (Throw a) = Throw a. This simplifies the proposition
and the proof because it removes the pointless Vs.

PRrROOF. The proof is by induction on P + (e,(h, 1)) = (e’,(h’, I')). The only
non-trivial cases are blocks and try-catch. We discuss the block case as it isolates
the main issue, local variables. Let e be {V:T; ep}. From the assumptions fv e C
set Vs, | C,, [Vs [—] Is] and | Vs| + maz-vars e < |ls| the preconditions for the
induction hypothesis follow and we obtain an s’ such that compP; P 1 (compE;
Vso eo,(h, Is)) = (finy e',(h', Is)) (1) and " C,, [Vsg [—] Is] (2), where Vsq is
Vs @ [V]. This s’ is also the witness for our goal. Its first conjunct compP; P
F1 (compE1 Vs e,(h, ls)) = (finy e',(h/, Is)) follows directly from (1) by the rule
for blocks. The second conjunct is the conclusion of the following general lemma
about maps:

[l Cm [Vs [=] Is]; UV Com [Vs [=] Is', V= 0]; V€ set Vs = Isiindea vs v] = 8'lindes Vs V]
|ls| = |ls’]; | Vs| < |Is']]
= (V:=1V) Cpy [Vs [—] Is]

It is proved via the chain I'(V =1 V) C,, [Vs [=] Is/, Viso(V :i=1 V) = [Vs
[—] Is(V :==1V) C,p, [Vs [—] Is] where the rightmost C,, is proved by a case
distinction on whether [ V' is None or not.
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unmod (new C) i = True

unmod (Cast C e) i = unmod e i

unmod (Val v) i = True

unmod (e1 <bop> e2) i = (unmod e1 i A unmod ez i)

unmod (Var i) j = True

unmod (i :=e€) j = (i #j A unmod e j)

unmod (e.F{D}) i = unmod e %

unmod (e1.F{D} := e2) i = (unmod e1 i A unmod ez 1)

unmod (e.M(es)) i = (unmod e i A unmods es 1)

unmod {j:T; e} i = unmod e i

unmod (e1; ez2) © = (unmod e1 i A unmod ez 1)

unmod (if (e) e1 else e2) i = (unmod e i A unmod e1 i A unmod ez %)
unmod (while (e) c¢) ¢ = (unmod e i A unmod c 7)

unmod (throw e) i = unmod e i

unmod (try e1 catch (C 1) e2) j = (unmod e1 j A (if t = j then False else unmod ez j))
unmods [] i = True

unmods (e-es) i = (unmod e i A unmods es i)

Fig. 36. Definition of unmod

The first premise of the lemma is one of our assumptions. The second premise
(with v being s’} y);) follows from (2) because | Vs| < |Is|, which follows from the
assumption | Vs| + maz-vars e < |ls|. Premise |ls| = |Is’| holds because J;-evaluation
does not change the length of the list of local variables. Thus we are left with the
premise

V € set Vs = ls[z'ndew Vs V] = lS,[indez Vs V]

which follows because evaluation does not modify hidden local variables. We call
an element in a list hidden if it occurrs again further to the right:

hidden :: 'a list = nmat = bool

hidden zs 1 = i < |zs| A zsp;) € set (drop (i + 1) ws)

Now we introduce a predicate unmod :: expr; = nat = bool (Fig. 36) such that
unmod e i means 7 is not assigned to in e. It is easy to prove that hidden variables
are unmodified and that evaluation preserves unmodified variables:

hidden Vs i = unmod (compE1 Vs e) &
[P 1 (e,(h, Is)) = (e/,(h/, Is")); unmod e i; i < |ls]] = ls;;) = Is"]y
Now assume V' € set Vs. It follows easily that hidden Vs (index Vs V'), hence that

unmod (compE1 Vsg e) (index Vs V'), and hence that lsjinges vs v] = I8'lindes vs v]»
thus proving the remaining premise. [J

5.6 Correctness of Stage 2
We need to prove that evaluation on the Jj-level implies a related execution se-
quence on the JVM-level:
THEOREM 5.2. If P; + Csees M: Ts—T = body in C and
Py F1 (body,(h, Is)) = (e/,(k', Is")) then
compPy P+ (None, h, [([], Is, C, M, 0)]) == (exception ¢’, h', []).
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Essentially this theorem says that when executing a method body one obtains the
same final heap on the JVM-level as on the Jy-level. The local variables have disap-
peared from the final JVM state because we are right at the end of the computation,
where the frame stack is empty. Function exception of type 'a exp = addr option
extracts the exception reference if there is one: exception (Throw a) = |a| and
exception - = None.

Unfortunately, this theorem needs to be strengthened greatly before it becomes
provable by induction. The result is

LEMMA 5.3. Let Py :: Jy-prog, e :: expry and P = compPy Py. Assume
P,C,M,pc > compEs e and P,C,M > compzEs e pc |vs| / I,|vs| and
{pc..<pc + |compEs e|} C I. If Py b1 (e,(h, Is)) = (e/,(k’, ls")) then, letting o
= (None, h, (vs, Is, C, M, pc) - fs), there are two cases:

—1If ¢/ = Val v then
Pt o == (None, b/, (v-us, Is', C, M, pc + |compE5 el)-fs).

—If ¢/ = Throw a then there is a pc’ such that pc < pe’ < pc + |compE4 e| and
= caught P pc' b’ a (compzEy e pc |vs|) and
P+ o 2 find-handler P a b’ ((vs, Is’, C, M, pc')- fs).

We will discuss the various components of this lemma in turn.

Instead of a method body we allow an arbitrary expression e. As a consequence
we require that the pc in the top frame points to the compiled expression. To this
end we define
P,C,M,pc 1> is = is < drop pc (instrs-of P C M)

P,C,M,pc > i = Jis. drop pc (instrs-of P C M) = i-1s

where P,C,M ,pc >> is means that the instruction list is is a prefix (<) of the
instructions of method M starting at pc, and P,C,M,pc > ¢ means that ¢ is the
instruction at pc in M. Exception handling complicates matters further. We need
to say that the exception table compiled from e is contained in the exception table
of M in such a way that exceptions thrown by e are not erroneously caught by
exception table entries further to the left (because exception tables are searched
from the left). We also need to say that if an exception thrown by e is caught
by an entry further to the right, that entry does not expect more elements on the
stack than we currently have. This is what P,C,M > compzEs e pc |vs| / I,|vs|
expresses:
PCMat/)I,d=
Jatg xtq.

ez-table-of P C M = xto Q at @ zt1 A pes ato NI = {} A pesxt C I A

(Vpce€l. ¥V C pc’ d'. match-ex-table P C pc at1 = |(pc’, d)] — d' < d)

where ez-table-of P C M returns the exception table component of method P C' M,
and pcs :: ex-table = pc set yields all program counters guarded by some entry
in the table: pes 2t = U (s, ¢, ¢, b, d)eset ot 1f--<t}. The requirement concerning
the exception entries to the right of z¢ is expressed via function match-ez-table
which we describe informally: match-ex-table P C pc xt; searches zt; for an entry
matching an exception of class C' thrown at pc. If it finds a suitable entry, it returns
the corresponding pair (pc’, d’) of the handler pc and the size the stack has to be
reduced to, which must be less or equal d.
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Let us now turn to the conclusion of the lemma. If the J; evaluation ended in
a value v, there is a corresponding JVM execution which deposits v on top of the
operand stack. If the J; evaluation ended with an exception, there must be a pc’
where the corresponding JVM exception is raised. This pc’ must lie within the
instruction list generated from e, the exception (identified by pc’ and the class of
the exception object A’ a) must not be caught by an exception handler in e, and
the final JVM state is the one reached by searching the frame stack for a matching
handler. The definition of caught is straightforward and omitted.

PrOOF. Lemma 5.3 is proved by induction on Py k1 (e,(h, ls)) = (e',(h/, Is))).
Each case is a lengthy combination of JVM executions of the compiled subexpres-
sions of e (obtained from the induction hypotheses) to obtain the JVM execution of
compEo e. We will sketch one case, the penultimate rule in Fig. 4, which describes
the evaluation of e = try e; catch (C’ V) ey when ey throws an exception of a
subclass of C'. Let o9 = (None, hg, (vs, lsg, C, M, pc)-fs), pcy = pc + |compE>
e1|, and oo’ = (None, hy, (Addr a-vs, lsy, C, M, pc; + 1) fs).

First we show P F o¢ 2% o’. From the induction hypothesis for the evaluation
of e; we obtain pc’ such that pc < pe’ < pey and = caught P pc’ hy a (compzEy eq
pc |vs|) and P+ o9 22 find-handler P a hy ((vs, ls1, C, M, pc')-fs). It remains
to show that find-handler returns oq’, which is the case if it reaches the entry at
the end of 2t = compzFEs € pc |vs| = compzEy ey pe |vs|] Q@ compzEy e (pey + 2)
|vs|] @ [(pe, pe1, C, per + 1, |vs])]. From the assumption P,C,M > xt / I,|vs| it
follows that ez-table-of P C' M is of the form ztg @ xt @Q xt; and that pcs xty and
T are disjoint. Because pc < pc’ < pcy implies pc’ € {pc..<pc + |compEs €|} and
because by assumption {pc..<pc + |compE5 e|} C I, we cannot have pc’ € pes xtg,
i.e. the exception is not protected by an entry in xty. We already know that it is
not caught by compzEy e1 pe |vs| and it cannot be caught by compzEs e (pey +
2) |vs| either because all of its entries protect program counters > pc1+2 > pc'.
Thus find-handler reaches the matching entry at the end of .

Executing the Store instruction yields P + o’ LN o1 where 01 = (None, hq,
(vs, ls1[i := Addr a], C, M, pc1 + 2)-fs). Let pco = pc1 + 2 + |compEs eal.
If the evaluation of es ends in Val v it follows easily from the second induction
hypothesis that P - oy 2= (None, ha, (v-vs, Isy, C, M, pca) - frs), as required. If
it ends in an exception Throw za, the second induction hypothesis yields a pc’’ such
that pc14+2 < pe” < peo and — caught P pe” hy za (compzEs es (pe1 + 2) |vs|)
and P+ o7 2% oo where g9 = find-handler P za hy ((vs, lsa, C, M, pc”) - fs).
This pe’’ will also be the witness of the overall goal. We need to show that pc < pe’’
< pc + |compE> e, which is trivial, that the exception is not caught by zt, which
follows because it is not caught by compazEs es (pcy + 2) |vs| and the remaining
entries of xt all protect program counters < pc; < pc’’, and that P + o Jm, o2,
which we already have. [J

The proof of Theorem 5.2 from Lemma 5.3 is straightforward.

5.7 Main Correctness Theorem

Composing Theorems 5.1 and 5.2 yields the main correctness theorem:
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THEOREM 5.4. If wwf-J-prog P and
PF Csees M: Ts—T = (pns, body) in C' and
P+ (body,(h, [this - pns [—] vs])) = (e/,(h', I')) and |vs| = |pns| + 1 and
|rest| = maz-vars body then
J2JVM P + (None, h, [([], vs @ rest, C, M, 0)]) 2= (exception ¢’, h', []).

If the program is weakly well-formed, then a big step evaluation of a Jinja method
body implies a corresponding JVM execution of the compiled program. The initial
JVM state contains the same heap, an empty operand stack, and a list of local
variables consisting of the parameters values vs followed by an arbitrary rest which
only needs to be of the right length maz-vars body.

One may also want to prove the converse: any result produced by the compiled
program can be produced by the source program. Given the above correctness
result and the fact that the JVM is deterministic, it would suffice to prove that if
the compiled program terminates, so does the source program. We have not done
S0.

5.8 Preservation of Well-formedness: Stage 1

Now we turn from the semantics to the question of type correctness and general
well-formedness of the generated code. Preservation of well-typedness by compFE;
is easily proved by induction on e:

LEMMA 5.5. If P,[Vs [—] Ts]F e :: U and |Ts| = |Vs| then
compP f P,Ts 1 compE, Vs e :: U.

Because program compilation compP does not modify the types, which is reflected
in a number of lemmas like compP f P+ T < T'iff P = T < T’, it does not matter
what f is.

The preservation of definite assignment requires a sequence of lemmas, all proved
by induction on e, the first three automatically.

If Ae=|A4] then AC fve

If A e= None then A (compE; Vs e) = None.

D e None

If Ae=|A4] and fve C set Vs then A (compE1 Vs e) = |index Vs < AJ.

If ACsetVsand fueC set Vs and D e |A] then D (compE1 Vs e) |index Vs < Al.

Here f ¢ A is the image of A under f: f ‘A = {y| Jz€A. y = fz}. The final
lemma has the following corollary:

COROLLARY 5.6. If D e |set Vs| and fv e C set Vs and distinct Vs then
D (compE; Vse) [{..<|Vs|}].

The combination of this corollary (applicable because all parameter names of a
well-formed method are distinct and do not contain this), Lemma 5.5, and the easy
lemma B (compE; Vs e) | Vs| yields

THEOREM 5.7. If wf-J-prog P then wf-Ji-prog (compP, P).

The proof is straightforward using the lemma (where /\ is universal quantification)
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INC M Ts T m.

[PFE Csees M: Ts—T = m in C; wf-mdecl wf1 P C (M, Ts, T, m)]

= wf-mdecl wfo (compP f P) C (M, Ts, T, f m);
wf-prog wf1 P]
= wf-prog wfa (compP f P)
which essentially says that compP f turns a wf; well-formed program into a wfs
well-formed program if f turns a wf; well-formed method into a wfs well-formed
method.

5.9 Preservation of Well-formedness: Stage 2

We have to show that compFEs maps a well-typed J; expression into a well-typed
instruction list. For that purpose we follow Stark et al. [2001] and define a “type
compiler” that compiles an expression into type annotations (a method type) for
the instruction list that compFEs produces:

compT :: ty list = nat set option = ty list = expr1 = ty;’ list
As in §4.7 we fix the program and the method we are in:

P Ji-prog the program,

maxl :: nat number of local variables,
mzxs :: nat maximum stack size,
T, @ty and return type of the method.

The type compiler call compT E A ST e produces the method type for compFE, e
in the context of the environment F assuming that initially a) the local variables
in A :: nat set option are initialised and b) the stack elements are typed according
to ST :: ty list. It uses the following auxiliary functions:

tyy E A’ = map (Ai. ifi € A’ N i < |E| then OK Ey;) else Err) [0..<mal]

computes the typing of the local variables based on their declared types in E and
their initialisation status in A’ :: nat set.

ty;’ ST E A = case A of None = None | |A'] = [(ST, ty; E A")|

computes the state type described by ST, F and A. Remember that A = None
indicates unreachability.

after EA ST e=ty;,’ (ty Ee-ST) E (AU A e)

produces the state type characterising stack and local variables after the evaluation
of e. Thus we need to push the type of e onto the stack and take the effect of
e on A into account. Function ty is a functional version of type checking and is
characterised by P,E i1 e T = tyEe=T

The full definition of compT is shown in Fig. 37 and uses the additional function

compTq EA ST e =compT EA ST e Q [after E A ST €]

because the method type that compT produces (intentionally) lacks the state types
directly before and after the execution of the corresponding instruction list. That is,
it is one element shorter than the instruction list, describing only the states between
the instructions. As a simple example let e be the expression 1 := Val (Intg 42)
and hence
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compT E A ST (new C) = |
compT E A ST (Cast C e) = compTq E A ST e
compT E A ST (Val v) = ||

compT E A ST (e1 <bop> e2) =
(let STy =ty Ee1-ST; A1 = AU A ey in compTq EA ST e1 @ compTq E A1 ST e2)

compT E A ST (Var i) = ]
compT E A ST (i :=e) = compTq EA ST e @ [ty,’ STE (AU A eU [{i}])]
compT E A ST (e.F{D}) = compT, E A ST e

compT E A ST (e1.F{D} :=e3) =
(/etSTl =tyFEe-ST; A1y =AU Aer; Ag = A1 U A en
in compTq E A ST e1 Q compTq E A1 ST1 ez Q [ty;! ST E As))

compT E A ST {i:T; e} = compT (E Q [T]) (A& 1) ST e

compT E A ST (e1; e2) =
(let Ay = AU A ey in compToe EA ST e1 Q [ty;’ ST E A1] @ compT E A1 ST e2)

compT E A ST (if (e) ey else eg) =
(let Ap =AU Ae;Tm=ty;’ STE Ao
in compTqa EA ST e @ [7] Q@ compTq E Ag ST e1 Q [1] Q compT E Ay ST e2)

compT E A ST (while (e) ¢) =
(let Ap =AU Ae; Ay =AU Ac;T=ty,’ STE Ap
in compTqo EA ST e @ [7] Q@ compTq E Ag ST ¢ Q [ty;' ST E Ay, ty;’ ST E Ao))

compT E A ST (throw e) = compTq, E A ST e
compT E A ST (e.M(es)) = compTq EA ST e @ compTs E (AU Ae) (ty Ee-ST) es

compT E A ST (try e1 catch (C i) e2) = compTq EA ST e Q
[ty;’ (Class C-ST) E A, ty;" ST (E Q [Class C]) (A U |{i}])] @
compT (E Q [Class C]) (AU [{i}]) ST e2

compTs EA ST [| =]
compTs EA ST (e-es) = compTq EA ST e Q compTs E (AU Ae) (ty Ee-ST) es

Fig. 37. Type compiler

compE2 e = [Push (Intg 42), Store 1, Push Unit]

With E = [Class C, Integer], A = |{0}] and ST = [] we obtain
compT E A ST e = [[([Integer]|, [OK (Class C), Err])|, |([], [OK (Class C), OK Integer])]]

Since we are dealing with instruction lists in isolation rather than whole methods,
we need a new well-typedness notion. We write b is, zt [:1] 7s to mean that
the instruction list is together with the exception table zt is well-typed w.r.t. the
method type 7s :: ty;’ list:

Fois, ot [2] 7s =
lis|] < |7s| A pes at C {0..<[is|} A (Vpe<|is|. P,Tr,maxs,|Ts|,zt I isppe],pc 2 TS)

The key theorem says that the instruction list and exception table are well-typed

w.r.t. the method type produced by the type compiler:

THEOREM 5.8. If P.Ety e:: T and D e A and B e |E| and
|ST| + maz-stack e < mas and |E| + maz-vars e < mal then
F compEqy e, compxEs e 0 |ST| [:2] ty;' ST E A-compT, E A ST e.
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0,0 s

b ise, ate [] T TSe Q [T¢] Ind.hyp.

F ise, ate [:2] TS Lemma 5.9
F [test], [| [] Te-T1-Tsc Q [7e, T2, T1, T

F ise Q [test], zte [::] Ts Lemma 5.9
b ise, xte [12] 71 TS @ [7¢] Ind.hyp.

F ise Q [test] Q isc, ate Q xte’ 1] Ts Lemma 5.9
- Popl, [ [ [re, 2]

F ise Q [test] Q is. @ [Pop], zte @ zt.’ [:1] Ts Lemma 5.9
PrFry<'T

P,T,,mzs,|Ts|,[] b goto,|ise| + |isc| + 2 :: Ts

F ise Q [test] @ is. @ [Pop, goto], zte @ zt.’ [::] Ts Lemma 5.10
F [Push Unit], [] [::] [71, 7]

F compEy (while (e) ¢), compzE> (while (e) ¢) 0 |ST| [:] 7s Lemma 5.9
Fig. 38. Proof summary for while

PROOF. By induction on e. In order to combine different well-typedness propo-
sitions we need a central lemma which follows readily from the definitions:

LEMMA 5.9. If F isy, aty [:] 781 @ 789 and b isq, xte [:] 753 and
|Ts1| = |is1] and 7s3 < 759 then
Fois1 Q iso, xty Q shift |isy| xta [:] 781 Q Ts2.

Here shift n xt shifts all program counters in xt by n and < again means prefix.
This lemma works well in the presence of forward jumps, but for backward ones we
need a second one:

LEmMA 5.10. If F is, at [:1] 7s and P,T.,.,mzs,mpc,[] - i,pc :: Ts and
pc = |is| and mpe = |75 and |is| + 1 < |7s| then F is @ [i], 2t [:] Ts.

We present just one case of the proof of Theorem 5.8, the while-loop. The
correspondence of instructions compFEs (while (e) ¢) (first column) and types
compT E A ST (while (e) ¢) (second column) is best described by a table:

compEs e 7-78, where T = ty;’ ST E A and 7s, = compT E A ST e

IfFalse ... T, where 7, = ty;’ (Boolean - ST) E Apg and 4g = AU A e
compEo ¢ T1-7S. where 71 = ty;' ST E Ag and 7s. = compT E Ag ST ¢
Pop Te where 7. = ty;’ (ty E¢-ST) E Ay and 41 = Ag U A ¢
Goto ... T where 79 = ty;’ ST E A
Push Unit T1

T/ where 7/ = ty;’ (Void - ST) E Ag

Using the abbreviations is, = compEs e, xt, = compzEs €0 |ST), is. = compEs c,
zte = compzEy ¢ 0 |ST), at.’ = shift (Jisc| + 1) at., test = IfFalse ..., goto =
Goto ...and 78 = 778, Q [re, T1] Q 78, Q [7(, T2, T1, T'] (ie. T$ = compT E A
ST (while (e) c)), we can summarize the proof in the table in Fig. 38 where the
uncommented lines follow easily.

The remaining cases follow the same pattern. Try-catch requires

LEMMA 5.11. If |is1| = |rs1| and is-class P C and |ST| < mas and
Fis1 @ dsa, at [2] 781 @ (ty;’ (Class C-ST) E A-7s2) and
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VTEset Ts1.
v ST LT
= [(ST', LT")] —
|ST| < |ST'| A P+ |(drop (|ST'| — |ST|) ST, LT")| <’ ty;' STE A

then F sy @ is, zt @ [(0, |is1| — 1, C, |is1|, |ST)] [:] 751 @ (ty;’ (Class C-ST) E A-7s).
to justify the additional exception table entry. [
Now it is not very difficult to conclude

THEOREM 5.12. If wf-Jq-prog P then wf-jum-prog (compPs P).

By definition of wf-jum-prog we need a table ® such that wf-jum-proge (compPs P).
The table can be computed by compTP :: Ji-prog = typ
compTP P C M =
let (D, Ts, T, e) = method P C M; E = Class C-Ts; A = [{..|Ts|}];
mal = 1 4+ | Ts| + maz-vars e
inty;’ mal [| EA-compTq Pmzl E Al e

and the proof of wf-jum-proge follows largely from Theorem 5.8. Note that ty;’ and
compT, are explicitly supplied with their implicit arguments mzl and P because
those are no longer fixed globally but are the specific values in this definition.

5.10 Preservation of Well-formedness: Main theorem

Combining Theorems 5.7 and 5.12 yields the main theorem:
THEOREM 5.13. If wf-J-prog P then wf-jum-prog (J2JVM P).

If the source program is wellformed—which includes every method body being
well-typed—then the compiled program is also wellformed and will pass bytecode
verification. This is a non-trivial property not guaranteed by Java compilers (for
example JDK 1.2 and 1.3) [Stark and Schmid 2001].

5.11 Related Work

There is a sizable amount of literature on compiler verification in general [Dave
2003], which we cannot possibly survey here, but very little specifically for Java. An
early landmark in mechanically verified compilers is the work by Young [1989] whose
source language has procedures but no OO features, but whose target language is
a real rather than a virtual machine. The work by Strecker [2002] and Klein and
Strecker [2004] is closely related to ours but their main theorem does not talk
about exceptions, which is a considerable simplification. Furthermore, their type
compiler intrinsically assumes that variables are initialized and do not change their
type (which they can if you have local variables and reuse storage as we do).
Stérk et al. [2001] show that terminating computations are compiled into termi-
nating ones, just as we have done. They also claim to prove a 1:1 correspondence
between Java and JVM executions. However, their main theorem fails to imply
that nonterminating computations are compiled into nonterminating ones (which
we have not shown either). Its statement and proof need to be augmented to prove
that one cannot have a diverging Java computation in correspondence with a ter-
minating JVM execution. Furthermore, it is interesting to note that their compiler
has one stage only. Our stage 1 disappears in the sentence “we suppress the details
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of a consistent assignment of JVM variable numbers T to (occurrences of) Java
variables #” combined with the fact that their Java semantics treats local variables
like the JVM: upon exit of a block, the local variables of the block are unchanged
and still visible. This works only because Java forbids nested declarations of the
same variable, which Jinja allows. Finally it is interesting to note that their for-
malization uses attributed syntax trees that tell you, for example, what the current
environment F of each subexpression is, whereas we pass E explicitly into many
of our functions. Although this is true for the whole formalization, it is most no-
ticeable for the type compiler with its lengthy parameter list. It may well reduce
clutter in our formalization to work with expressions annotated with F etc. We
have not done so to minimize the number of concepts needed.

The correctness of compiling exceptions is studied by Hutton and Wright [2004].
They treat a very simple expression language and a stack machine where all ex-
ception handling information is kept on the stack. Because there is no separate
exception table, this leads to simpler exception handling on the machine level and
simpler proofs. It is possible that their machine could serve as a convenient stepping
stone between Jinja and the Jinja VM.

League et al. [2002] compile Featherweight Java into F,,, which is very different
from our compilation into the JVM.

6. CONCLUSION

We have given a completely formal account of the core of a Java-like sequential
language, abstract machine and compiler. Although there are some interesting
contributions to the analysis of individual facets, for example definite assignment,
the emphasis is on a unified model. At the same time we have demonstrated that
it is possible to present this model in a style appropriate for a scientific journal,
although the formal and machine-checked meta-language prohibits some of the lib-
erties (like “...”) of traditional journal articles (and we have decided not to take
others like hiding injections such as [.]). Of course Jinja is still a small language
compared to Java, but we hope that our theories will become the basis for further
extensions of Jinja, just as others, e.g. Biichi and Weck [1998], have extended some
of our earlier Java formalisations.

The whole development (excluding this paper) runs to 20000 lines of Isabelle/HOL
text (with few comments), roughly 350 printed pages and just over 1000 theorems
(available at www.in.tum.de/ nipkow/Jinja/). The proofs take about 25min to
process on a 3GHz Pentium IV with 1GB RAM. This is a major investment, but one
that can be built up to gradually: from type checking via prototyping to full-blown
theorem proving. The early stages are cheap and worthwhile for any language def-
inition, the final stage is more of an investment but yields a considerable increase
in confidence—in particular since the proofs are structured and the general drift of
an argument can be followed even by a non-theorem-proving-expert.

We have already hinted that the whole formalisation is executable. (With the ex-
ception of wf-jum-prog, a specification that is implemented by the executable BV.)
That is, Isabelle/HOL supports the translation of a mixture of recursive functions
and inductive relations into executable (ML) code [Berghofer and Nipkow 2002;
Berghofer 2003] and we have run test cases to increase our confidence in the intu-
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itive correctness of our definitions. Although we have not gone into this aspect at
all, we consider prototyping essential for projects like this, where the initial speci-
fication (here: the source language) is already too large to be “obviously” correct.
In addition we consider these executable ML prototypes as reference implemen-
tations for the language, the compiler, the bytecode verifier etc. Although these
prototypes do not have the performance required for production purposes, theorem
provers offer the right environment for achieving the required performance: efficient
programs can be proved correct w.r.t. initial specifications and then exported to
ML just like the prototypes. In fact, the Jinja code generator is a standard recur-
sive functional program without particular performance bottlenecks and may not
need much tuning. The bytecode verifier is another matter because its fixed point
engine passes a large list around in a single-threaded manner but the generated ML
code does not take advantage of this. ACL2 and PVS have code generators that
could safely implement this list by an array that is updated destructively. There is
ongoing work to provide similar features in Isabelle. We are convinced that theorem
provers provide the right means to develop certified efficient language processors
that are largely functional but imperative where necessary. Liu and Moore [2003]
already provide strong evidence for this thesis.
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