
HOARE LOGICS IN ISABELLE/HOL

TOBIAS NIPKOW
Technische Universität München, Institut für Informatik

Abstract. This paper describes Hoare logics for a number of imperative language con-
structs, from while-loops via exceptions to mutually recursive procedures. Both partial
and total correctness are treated. In particular a proof system for total correctness of
recursive procedures in the presence of unbounded nondeterminism is presented. All
systems are formalized and shown to be sound and complete in the theorem prover
Isabelle/HOL.

1. Introduction

Hoare logic is a well developed area with a long history (by computer science
standards). The purpose of this report is

− to present, in a unified notation, Hoare logics for a number of dif-
ferent programming language constructs such as loops, exceptions,
expressions with side effects, and procedures, together with clear pre-
sentations of their soundness and especially completeness proofs, and

− to show that this can and argue that this should be done in a theorem
prover, in our case Isabelle/HOL [20].

Thus one can view this report as a relative of Apt’s survey papers [2, 3], but
with new foundations. Instead of on paper, all formalizations and proofs
have been carried out with the help of a theorem prover. A first attempt in
this direction [16, 17] merely formalized and debugged an existing complete-
ness proof. Kleymann [27] went one step further and formalized a new and
slick Hoare logic for total correctness of recursive procedures. This problem
has an interesting history. The logic presented by Apt [2] was later found
to be unsound by America and de Boer [1], who modified the system and
proved its soundness and completeness. Their proof system, however, suffers
from three additional rules with syntactic side conditions. The first really
simple system is the one by Kleymann [27] — and it was embedded in a
theorem prover.

notes.tex; 21/11/2001; 15:49; p.1

It may be argued that Kleymann’s proof system has nothing to do
with the use of a theorem prover. Although the two things are indeed
independent of each other, theorem provers tend to act like Occam’s razor:
the enormous amount of detail one has to deal with when building a model
of anything inside a theorem prover often forces one to discover unexpected
simplifications. Thus programming logics are an ideal application area for
theorem provers: both correctness and simplicity of such logics is of vi-
tal importance, and, as Apt himself says [2], “various proofs given in the
literature are awkward, incomplete, or even incorrect.”

In modelling the assertion language, we follow the extensional approach
[15] where assertions are identified with functions from states to propo-
sitions in the logic of the theorem prover. That is, we model only the
semantics but not the syntax of assertions. This is common practice (with
the exception of [7], but they do not consider completeness) because the
alternative, embedding an assertion language with quantifiers in a theorem
prover, is not just hard work but also orthogonal to the problem of embed-
ding the computational part of the Hoare logic. As a consequence we have
solved the question of expressiveness, i.e. whether the assertion language
is strong enough to express all intermediate predicates that may arise in
a proof, by going to a higher order logic. Thus our completeness results
do not automatically carry over to other logical systems, say first order
arithmetic. The advantage of the extensional approach is that it separates
reasoning about programs from expressiveness considerations — the latter
can then be conducted in isolation for each assertion language.

Much of this report is inspired by the work of Kleymann [10]. He used
the theorem prover LEGO [26] rather than Isabelle/HOL, which makes very
little difference except in one place (Sect. 2.4). Although in the end, none
of our logics are identical to any of his, they are closely related. The main
differences are that we consider many more language constructs, we gen-
eralize from deterministic to nondeterministic languages, and we consider
partial as well as total correctness.

The whole paper is generated directly from the Isabelle input files (which
include the text as comments). That is, if you see a lemma or theorem, you
can be sure its proof has been checked by Isabelle. But as the report does not
go into the details of the proofs, no previous exposure to theorem provers
is a prerequisite for reading it.

Isabelle/HOL is an interactive theorem prover for HOL, higher order
logic. Most of the syntax of HOL will be familiar to anybody with some
background in functional programming and logic. We just highlight some
of Isabelle’s nonstandard notation.

notes.tex; 21/11/2001; 15:49; p.2

The syntax [[P ; Q]] =⇒ R should be read as an inference rule with the
two premises P and Q and the conclusion R. Logically it is just a short-
hand for P =⇒ Q =⇒ R. Note that semicolon will also denote sequential
composition of programs! There are actually two implications −→ and =⇒.
The two mean the same thing, except that −→ is HOL’s “real” implication,
whereas =⇒ comes from Isabelle’s meta-logic and expresses inference rules.
Thus =⇒ cannot appear inside a HOL formula. For the purpose of this
paper the two may be identified. However, beware that −→ binds more
tightly than =⇒: in ∀ x . P −→ Q the ∀ x covers P −→ Q, whereas in ∀ x .
P =⇒ Q it covers only P.

Set comprehension is written {x . P} rather than {x | P} and is also
available for tuples, e.g. {(x , y , z). P}.

1.1. STRUCTURE OF THE PAPER

In Sect. 2 we discuss a simple while-language and modular extensions to
nondeterminism and local variables. In Sect. 3 we add exceptions and in
Sect. 4 side effects in expression evaluation. In Sect. 5 we add a single
parameterless but potentially recursive procedure, later extending it with
nondeterminism and local variables. In Sect. 6 the single procedure is re-
placed by multiple mutually recursive procedures. In Sect. 7 we treat a
single function with a single value parameter.

In each case we present syntax, operational semantics and Hoare logic
for partial correctness, together with soundness and completeness theorems.
For loops and procedures, we also cover total correctness.

The guiding principle is to cover each language feature in isolation and
in the simplest possible version. Combinations are only discussed if there is
some interference. We do not expect the remaining combinations to present
any problems not encountered before.

The choice of language features covered was inspired by the work of
von Oheimb [22, 23] who presents an Isabelle/HOL embedding of a Hoare
logic for a subset of Java. Based on the proof systems in this report, we have
meanwhile designed a simpler Hoare logic for a smaller subset of Java [24].

2. A simple while-language

2.1. SYNTAX AND OPERATIONAL SEMANTICS

We start by declaring the two types var and val of variables and values:

typedecl var
typedecl val

notes.tex; 21/11/2001; 15:49; p.3

They need not be refined any further. Building on them, we define states
as functions from variables to values and boolean expressions (bexp) as
functions from states to the booleans:

types state = var ⇒ val
bexp = state ⇒ bool

Most of the time the type of states could have been left completely
unspecified, just like the types var and val.

Our model of boolean expressions requires a few words of explanation.
Type bool is HOL’s predefined type of propositions. Thus all the usual
logical connectives like ∧ and ∨ are available. Instead of modelling the
syntax of boolean expressions, we model their semantics. For example, the
programming language expression x != y becomes λs. s x 6= s y, where
s x expresses the lookup of the value of variable x in state s.

Now it is time to describe the (abstract and concrete) syntax of our
programming language, which is easily done with a recursive datatype such
as found in most functional programming languages:

datatype com = Do (state ⇒ state)
| Semi com com (-; - [60 , 60] 10)
| Cond bexp com com (IF - THEN - ELSE - 60)
| While bexp com (WHILE - DO - 60)

Statements in this language are called commands. They are modelled as
terms of type com. Do f represents an atomic command that changes the
state from s to f s in one step. Thus the command that does nothing,
often called skip, can be represented by Do (λs. s). More interestingly,
an assignment x := e, where e is some expression, can be modelled as
follows: represent e by a function e from state to val, and the assignment
by Do (λs. s(x := e s)), where f (a := v) is a predefined construct in HOL
for updating function f at argument a with value v. Again we have chosen
to model the semantics rather than the syntax, which simplifies matters
enormously. Of course it means that we can no longer talk about certain
syntactic matters, but that is just fine.

The constructors Semi, Cond and While represent sequential composi-
tion, conditional and while-loop. The annotations allow us to write

c1 ; c2 IF b THEN c1 ELSE c2 WHILE b DO c

instead of Semi c1 c2, Cond b c1 c2 and While b c.
Now it is time to define the semantics of the language, which we do

operationally, by the simplest possible scheme, a so-called evaluation or
big step semantics. Execution of commands is defined via triples of the
form s −c→ t which should be read as “execution of c starting in state

notes.tex; 21/11/2001; 15:49; p.4

s may terminate in state t”. This allows for two kinds of nondetermin-
ism: there may be other executions s −c→ u with t 6= u, and there may
be nonterminating computations as well. For the time being we do not
model nontermination explicitly. Only if for some s and c there is no triple
s −c→ t does this signal what we intuitively view as nontermination. We
start with a simple deterministic language and assertions about terminating
computations. Nondeterminism and nontermination are treated later. The
semantics of our language is defined inductively. Beware that semicolon is
used both as a separator of premises and for sequential composition.

s −Do f→ f s

[[s0 −c1→ s1 ; s1 −c2→ s2]] =⇒ s0 −c1 ;c2→ s2

[[b s; s −c1→ t]] =⇒ s −IF b THEN c1 ELSE c2→ t
[[¬b s; s −c2→ t]] =⇒ s −IF b THEN c1 ELSE c2→ t

¬b s =⇒ s −WHILE b DO c→ s
[[b s; s −c→ t ; t −WHILE b DO c→ u]] =⇒ s −WHILE b DO c→ u

2.2. HOARE LOGIC FOR PARTIAL CORRECTNESS

We continue our semantic approach by modelling assertions just like boolean
expressions, i.e. as functions:

types assn = state ⇒ bool

Hoare triples are triples of the form {P} c {Q}, where the assertions P
and Q are the so-called pre and postconditions. Such a triple is valid (de-
noted by |=) iff every (terminating) execution starting in a state satisfying
P ends up in a state satisfying Q :

|= {P}c{Q} ≡ ∀ s t . s −c→ t −→ P s −→ Q t

The ≡ sign denotes definitional equality.
This notion of validity is called partial correctness because it does not

require termination of c.
Finally we come to the core of this paper, Hoare logic, i.e. inference

rules for deriving (hopefully valid) Hoare triples. As usual, derivability is
indicated by `, and defined inductively:

` {λs. P(f s)} Do f {P}

[[` {P}c1{Q}; ` {Q}c2{R}]] =⇒ ` {P} c1 ;c2 {R}

notes.tex; 21/11/2001; 15:49; p.5

[[` {λs. P s ∧ b s} c1 {Q}; ` {λs. P s ∧ ¬b s} c2 {Q}]]
=⇒ ` {P} IF b THEN c1 ELSE c2 {Q}

` {λs. P s ∧ b s} c {P} =⇒ ` {P} WHILE b DO c {λs. P s ∧ ¬b s}

[[∀ s. P ′ s −→ P s; ` {P}c{Q}; ∀ s. Q s −→ Q ′ s]] =⇒ ` {P ′}c{Q ′}

The final rule is called the consequence rule.
Soundness is proved by induction on the derivation of ` {P} c {Q}:

theorem ` {P}c{Q} =⇒ |= {P}c{Q}

Only the While-case requires additional help in the form of a lemma:

[[s −WHILE b DO c→ t ; P s; ∀ s s ′. P s ∧ b s ∧ s −c→ s ′ −→ P s ′]]
=⇒ P t ∧ ¬ b t

This lemma is the operational counterpart of the While-rule of Hoare logic.
It is proved by induction on the derivation of s −WHILE b DO c→ t.

Completeness is not quite as straightforward, but still easy. The proof
is best explained in terms of the weakest precondition:

wp :: com ⇒ assn ⇒ assn
wp c Q ≡ λs. ∀ t . s −c→ t −→ Q t

Loosely speaking, wp c Q is the set of all start states such that all (ter-
minating) executions of c end up in Q. This is appropriate in the context
of partial correctness. Dijkstra calls this the weakest liberal precondition
to emphasize that it corresponds to partial correctness. We use “weakest
precondition” all the time and let the context determine if we talk about
partial or total correctness — the latter is introduced further below.

The following lemmas about wp are easily derived:

lemma wp (Do f) Q = (λs. Q(f s))
lemma wp (c1 ;c2) R = wp c1 (wp c2 R)
lemma wp (IF b THEN c1 ELSE c2) Q = (λs. wp (if b s then c1 else c2) Q s)
lemma wp (WHILE b DO c) Q =

(λs. if b s then wp (c;WHILE b DO c) Q s else Q s)

Note that if−then−else is HOL’s predefined conditional expression.
By induction on c one can easily prove

lemma ∀Q . ` {wp c Q} c {Q}

from which completeness follows more or less directly via the rule of con-
sequence:

theorem |= {P}c{Q} =⇒ ` {P}c{Q}

notes.tex; 21/11/2001; 15:49; p.6

2.3. MODULAR EXTENSIONS OF PURE WHILE

We discuss two modular extensions of our simple while-language: non-
determinism and local variables. By modularity we mean that we can add
these features without disturbing the existing setup. In fact, even the proofs
can be extended modularly: the soundness proofs acquire two new easy
cases, and for the completeness proofs we merely have to provide suitable
lemmas about how wp behaves on the new constructs.

2.3.1. Nondeterminism

We add a choice construct at the level of commands: c1 | c2 is the
command that can nondeterministically choose to execute either c1 or c2 :

s −c1→ t =⇒ s −c1 | c2→ t s −c2→ t =⇒ s −c1 | c2→ t

The proof rule is analogous. If we want to make sure that all executions of
c1 | c2 fulfill their specification, both c1 and c2 must do so:

[[` {P} c1 {Q}; ` {P} c2 {Q}]] =⇒ ` {P} c1 | c2 {Q}

The behaviour of wp (required for the completness proof) is obvious:

wp (c1 | c2) Q = (λs. wp c1 Q s ∧ wp c2 Q s)

2.3.2. Local variables

We add a new command VAR x = e; c that assigns x the value of e,
executes c, and then restores the old value of x :

s(x := e s) −c→ t =⇒ s −VAR x = e; c→ t(x := s x)

The corresponding proof rule

∀ v . ` {λs. P (s(x := v)) ∧ s x = e (s(x := v))} c {λs. Q (s(x := v))} =⇒
` {P} VAR x = e; c {Q}

needs a few words of explanation. The main problem is how to refer to the
initial value of x in the postcondition. In some related calculi like VDM [9],
this is part of the logic, but in plain Hoare logic we have to remember
the old value of x explicitly by equating it to something we can refer to
in the postcondition. That is the raison d’être for v. Of course this should
work for every value of x. Hence the ∀ v. If you are used to more syntactic
presentations of Hoare logic you may prefer a side condition that v does
not occur free in P, e, c or Q. However, since we embed Hoare logic in a
language with quantifiers, why not use them to good effect?

The behaviour of wp mirrors the execution of VAR:

notes.tex; 21/11/2001; 15:49; p.7

wp (VAR x = e; c) Q = (λs. wp c (λt . Q (t(x := s x))) (s(x := e s)))

2.4. HOARE LOGIC FOR TOTAL CORRECTNESS

2.4.1. Termination

Although partial correctness appeals because of its simplicity, in many cases
one would like the additional assurance that the command is guaranteed to
termiate if started in a state that satisfies the precondition. Even to express
this we need to define when a command is guaranteed to terminate. We can
do this without modifying our existing semantics by merely adding a second
inductively defined judgement c ↓ s that expresses guaranteed termination
of c started in state s:

Do f ↓ s

[[c1 ↓ s0 ; ∀ s1 . s0 −c1→ s1 −→ c2 ↓ s1]] =⇒ (c1 ;c2) ↓ s0

[[b s; c1 ↓ s]] =⇒ IF b THEN c1 ELSE c2 ↓ s
[[¬b s; c2 ↓ s]] =⇒ IF b THEN c1 ELSE c2 ↓ s

¬b s =⇒ WHILE b DO c ↓ s
[[b s; c ↓ s; ∀ t . s −c→ t −→ WHILE b DO c ↓ t]] =⇒ WHILE b DO c ↓ s

The rules should be self-explanatory.
Now that we have termination, we can define total validity, |=t, as partial

validity and guaranteed termination:

|=t {P}c{Q} ≡ |= {P}c{Q} ∧ (∀ s. P s −→ c↓s)

2.4.2. Hoare logic

Derivability of Hoare triples in the proof system for total correctness
is written `t {P} c {Q} and defined inductively. The rules for `t differ
from those for ` only in the one place where nontermination can arise: the
While-rule. Hence we only show that one rule:

[[wf r ; ∀ s ′. `t {λs. P s ∧ b s ∧ s ′ = s} c {λs. P s ∧ (s,s ′) ∈ r}]]
=⇒ `t {P} WHILE b DO c {λs. P s ∧ ¬b s}

The rule is like the one for partial correctness but it requires additionally
that with every execution of the loop body a wellfounded relation (wf r) on
the state space decreases: wellfoundedness of r means there is no infinite

notes.tex; 21/11/2001; 15:49; p.8

descending chain . . . , (s2 , s1) ∈ r, (s1 , s0) ∈ r. To compare the value of the
state before and after the execution of the loop body we again use the trick
discussed in connection with local variables above: a locally ∀ -quantified
variable.

This is almost the rule by Kleymann [10], except that we do not have a
wellfounded relation on some arbitrary set together with a measure function
on states, but have collapsed this into a wellfounded relation on states. This
does not just shorten the rule but it also simplifies it logically: now we know
that wellfounded relations on the state space suffice and we do not need to
drag in other types. I should mention that this simplification was forced on
me by Isabelle: since Isabelle does not allow local quantification over types,
I could not even express Kleymann’s rule, which requires just that.

The soundness theorem

theorem `t {P}c{Q} =⇒ |=t {P}c{Q}

is again proved by induction over c. But in the While-case we do not appeal
to the same lemma as in the proof for ` {P} c {Q} =⇒ |= {P} c {Q}.
Instead we perform a local proof by wellfounded induction over the given
relation r.

The completeness proof proceeds along the same lines as the one for
partial correctness. First we have to strengthen our notion of weakest
precondition to take termination into account:

wpt c Q ≡ λs. wp c Q s ∧ c↓s

The lemmas proved about wpt are the same as those for wp, except for the
While-case, which we deal with locally below. The key lemma

lemma ∀Q . `t {wpt c Q} c {Q}

is again proved by induction on c. The While-case is interesting because we
now have to furnish a suitable wellfounded relation. Of course the execution
of the loop body directly yields the required relation, as the following lemma
shows. Remember that set comprehension in Isabelle/HOL uses “.” rather
than “|”.

wf {(t , s). WHILE b DO c ↓ s ∧ b s ∧ s −c→ t}

This lemma follows easily from the lemma that if WHILE b DO c ↓ s then
there is no infinite sequence of executions of the body, which is proved by
induction on WHILE b DO c ↓ s.

The actual completeness theorem follows directly, in the same manner
as for partial correctness.

theorem |=t {P}c{Q} =⇒ `t {P}c{Q}

notes.tex; 21/11/2001; 15:49; p.9

2.4.3. Modular extensions of pure while

Nondeterministic choice and local variables can be added without dis-
turbing anything. Their proof rules remain exactly the same as in the case
of partial correctness. We have carried this out as well; the details are
straightforward.

3. Exceptions

We extend our pure while-language with exceptions, a modification that is
decidedly non-modular as it changes the state space and the semantics.

3.1. SYNTAX AND SEMANTICS

Our exceptions are very simple: there is only one exception, which we call
error, and it can be raised and handled. Semantically we treat errors by
extending our state space with a new boolean component that indicates if
the error has been raised. This new state space estate is defined as a record
with two components:

record estate = st :: state
err :: bool

Record selectors are simply projection functions. Records are constructed
as in (|st = s, err = False|) and updated selectively as in es(|err := True|).
We also introduce ok s as a shorthand for ¬err s.

Boolean expressions are now defined as

types bexp = estate ⇒ bool

The syntax of the language with errors is the same as the simple while
language, but extended with a construct for handling errors:

datatype com = Do (estate ⇒ estate)
| Semi com com (-; - [60 , 60] 10)
| Cond bexp com com (IF - THEN - ELSE - 60)
| While bexp com (WHILE - DO - 60)
| Handle com com (- HANDLE - 60)

How is an error raised? Simply by Do(λs. s(|err :=True|)). And how is it
handled? Command c1 HANDLE c2 executes c1, and, if this raises an
error, resets the error and continues with executing c2.

Having the error flag as part of the state allows us to execute commands
only if the state is ok and to skip execution otherwise [19]. It leads to the
following set of rules for command execution:

notes.tex; 21/11/2001; 15:49; p.10

ok s =⇒ s −Do f→ f s

[[s0 −c1→ s1 ; s1 −c2→ s2]] =⇒ s0 −c1 ;c2→ s2

[[ok s; b s; s −c1→ t]] =⇒ s −IF b THEN c1 ELSE c2→ t
[[ok s; ¬b s; s −c2→ t]] =⇒ s −IF b THEN c1 ELSE c2→ t

[[ok s; ¬b s]] =⇒ s −WHILE b DO c→ s
[[ok s; b s; s −c→ t ; t −WHILE b DO c→ u]] =⇒ s −WHILE b DO c→ u

[[ok s0 ; s0 −c1→ s1 ; ok s1]] =⇒ s0 −c1 HANDLE c2→ s1
[[ok s0 ; s0 −c1→ s1 ; err s1 ; s1 (|err :=False|) −c2→ s2]]
=⇒ s0 −c1 HANDLE c2→ s2

err s =⇒ s −c→ s

3.2. HOARE LOGIC

The Hoare logic follows the same lines as the one for the language without
exceptions. The main change is that assertions are now functions of estate:

types assn = estate ⇒ bool

Hence pre and postconditions can talk about whether an error has been
raised or not. Validity |= {P} c {Q} is again partial correctness as defined
in Sect. 2.2. The proof rules for the logic are the following:

` {λs. if err s then P s else P(f s)} Do f {P}

[[` {P}c1{Q}; ` {Q}c2{R}]] =⇒ ` {P} c1 ;c2 {R}

[[` {λs. ok s ∧ P s ∧ b s} c1 {Q}; ` {λs. ok s ∧ P s ∧ ¬b s} c2 {Q}]]
=⇒ ` {λs. if err s then Q s else P s} IF b THEN c1 ELSE c2 {Q}

` {λs. ok s ∧ P s ∧ b s} c {P}
=⇒ ` {P} WHILE b DO c {λs. P s ∧ (ok s −→ ¬b s)}

[[` {λs. ok s ∧ P s} c1 {λs. if err s then Q(s(|err :=False|)) else R s};
` {Q} c2 {R}]]

=⇒ ` {λs. if err s then R s else P s} c1 HANDLE c2 {R}

[[∀ s. P ′ s −→ P s; ` {P}c{Q}; ∀ s. Q s −→ Q ′ s]] =⇒ ` {P ′}c{Q ′}

The conclusions of the rules for Do, Cond and Handle follow the pattern
that the precondition has been augmented with a conditional that reduces

notes.tex; 21/11/2001; 15:49; p.11

to the “normal” precondition P if no error is present but collapses to the
postcondition Q otherwise, because in that case the command does nothing.
In the While rule we had to ensure that invariance of P only needs to be
proved for ok states, and that after the loop we can only infer the negation
of the loop test if we are in an ok state — otherwise we may have left the
loop by the error exit instead of normally. The most puzzling rule may be
the one for Handle: why does it always require ` {Q} c2 {R}, even if c1
cannot raise an error? The answer is that we can simply set Q to False, in
which case ` {Q} c2 {R} is always provable.

Soundness is proved as usual by induction on c, almost exactly as for
the basic while-language in Sect. 2.2, just with a few more case distinctions.

theorem ` {P}c{Q} =⇒ |= {P}c{Q}

The weakest precondition wp is also defined as in Sect. 2.2, but we
obtain a different set of derived laws:

lemma wp (Do f) Q = (λs. if err s then Q s else Q(f s))
lemma wp (c1 ;c2) R = wp c1 (wp c2 R)
lemma wp (IF b THEN c1 ELSE c2) Q =

(λs. if err s then Q s else wp (if b s then c1 else c2) Q s)
lemma wp (WHILE b DO c) Q =

(λs. if err s then Q s else if b s then wp (c;WHILE b DO c) Q s else Q s)
lemma wp (c1 HANDLE c2) R =

(λs. if err s then R s
else wp c1 (λt . if err t then (wp c2 R)(t(|err :=False|)) else R t) s)

As in Sect. 2.2, the key lemma is now proved without much fuss

lemma ∀Q . ` {wp c Q} c {Q}

and completeness follows directly:

theorem |= {P}c{Q} =⇒ ` {P}c{Q}

4. Side effects

We consider a language where the evaluation of expressions may have side
effects. In practice this occurs because of side effecting operators like ++ in
C or because of user-defined functions with side effects. One trivial solution
to this problem is to require a program transformation step that eliminates
compound expressions. For example, x := f(g(y)), where f and g may
have side effects, is transformed into z := g(y); x := f(z). The resulting
program is easy to deal with. Our aim is to show that one can reason about
compound expressions directly and that the required Hoare logic is quite

notes.tex; 21/11/2001; 15:49; p.12

straightforward. The essential idea goes back to Kowaltowski [12]: specify
the behaviour of expressions by Hoare triples where the postcondition can
refer to the value of the expression. This was already formalized by von
Oheimb [22]. We improve his rules a little by dropping the unnecessary
dependence of the precondition on the expression value.

4.1. SYNTAX AND SEMANTICS

Types var, val, state and bexp are defined as in Sect. 2. But now we
introduce a separate type of expressions because we want to study how
expression evaluation interacts with side effecting function calls:

datatype expr = Var var | Fun (state ⇒ val list ⇒ val × state) (expr list)

An expression can either be a variable or Fun f es, the application of a
function f to a list of expressions es. Function f depends not just on a list
of values but also on the state, and it returns not just a value but also a
new state. Thus we now have a more syntactic representation of expressions
(e.g. compared with bexp), but the notion of functions is still a semantic
one.

Throughout this section, e always stands for an expression and es always
for an expression list.

With the arrival of expressions, the syntax of commands changes: the
generic Do is replaced with a proper assigment command, and SKIP is
added as a separate command:

datatype com = SKIP
| Assign var expr (- := - [60 , 60] 10)
| Semi com com (-; - [60 , 60] 10)
| Cond bexp com com (IF - THEN - ELSE - 60)
| While bexp com (WHILE - DO - 60)

Now that expression evaluation can have side effects, the semantics of
the language is defined by three transition relations:

s −c→ t the familiar execution of commands,

s −e⇒ (v ,t) the evaluation of an expression e which produces both a value
v and a new state t, and

s =es⇒ (vs,t) the evaluation of an expression list es which produces both
a list of values vs and a new state t.

Evaluation of expressions and expression lists is defined mutually induc-
tively:

notes.tex; 21/11/2001; 15:49; p.13

s −Var x⇒ (s x ,s)
s =es⇒ (vs,t) =⇒ s −Fun f es⇒ f t vs

s =[]⇒ ([],s)
[[s −e⇒ (v ,t); t =es⇒ (vs,u)]] =⇒ s =e#es⇒ (v#vs,u)

Lists in Isabelle/HOL are built up from them empty list [] by the infix
constructor #, where x # xs is the list with head x and tail xs.

Command execution is defined as usual. Hence we only show the rules
for the two new commands:

s −SKIP→ s

s −e⇒ (v ,t) =⇒ s −x :=e→ t(x :=v)

4.2. HOARE LOGIC

Since expresssion evaluation may change the state, we need to reason about
the individual expresssion evaluation steps as well. To reason about evalu-
ation, we need to take the computed values into account, too. Thus there
will be two new kinds of Hoare triples: {P}e{Q ′} and {P}es{Q ′′}, where
P depends only on the state but where Q ′ depends also on the value of e
and Q ′′ also on the value of es. Thus there are three types of assertions:

types assn = state ⇒ bool
vassn = val ⇒ state ⇒ bool
vsassn = val list ⇒ state ⇒ bool

Most of them time we use P, Q and R for all three kinds of assertions.
Validity of the three kinds of Hoare triples is denoted by |=, |=e, |=es.

The definitions need no comments:

|= {P}c{Q} ≡ ∀ s t . s −c→ t −→ P s −→ Q t
|=e {P}e{Q} ≡ ∀ s t v . s −e⇒ (v ,t) −→ P s −→ Q v t
|=es {P}es{Q} ≡ ∀ s t vs. s =es⇒ (vs,t) −→ P s −→ Q vs t

Thus there are also three kinds of judgements: ` {P} c {Q}, `e {P} e
{Q} and `es {P} es {Q}. The latter two are defined by mutual induction:

`e {λs. Q (s x) s} Var x {Q}
`es {P} es {λvs s. Q (fst(f s vs)) (snd(f s vs))} =⇒ `e {P} Fun f es {Q}

`es {P []} [] {P}
[[`e {P} e {Q}; ∀ v . `es {Q v} es {λvs. R(v#vs)}]] =⇒ `es {P} e#es {R}

Functions fst and snd select the first and second component of a pair, i.e.
the value and the state in the above rule.

notes.tex; 21/11/2001; 15:49; p.14

If you wonder where the rules come from: they are derived from the
proofs one would perform in ordinary Hoare logic on the program one
obtains by removing nested expressions as indicated at the beginning of
this section. You can still recognize the ordinary assigment axiom (first
rule) and sequential composition (last rule).

As for the operational semantics, the rules for commands are the same as
in the side effect free language, except of course for the two new commands,
whose rules are straightforward:

` {P} SKIP {P}

`e {P} e {λv s. Q(s(x :=v))} =⇒ ` {P} x :=e {Q}

Soundness of `e and `es is easily proved by simultaneous induction on
e and es:

theorem ehoare-sound :
(`e {P}e{Q ′} −→ |=e {P}e{Q ′}) ∧ (`es {P}es{Q ′′} −→ |=es {P}es{Q ′′})

Soundness of ` is proved as usual, by induction on c. The Assign-case
is solved by lemma ehoare-sound above.

theorem ` {P}c{Q} =⇒ |= {P}c{Q}

Completeness is also proved in the standard manner. But since we have
three kinds of triples, we also need three weakest preconditions:

wp :: com ⇒ assn ⇒ assn
wp c Q ≡ (λs. ∀ t . s −c→ t −→ Q t)
wpe :: expr ⇒ vassn ⇒ assn
wpe e Q ≡ (λs. ∀ v t . s −e⇒ (v ,t) −→ Q v t)
wpes :: expr list ⇒ vsassn ⇒ assn
wpes es Q ≡ (λs. ∀ vs t . s =es⇒ (vs,t) −→ Q vs t)

Of the laws proved about wp, wpe and wpes we only show the “new” ones:

lemma wp SKIP P = P
lemma wp (x :=e) Q = wpe e (λv s. Q(s(x :=v)))
lemma wpe (Var x) Q = (λs. Q (s x) s)
lemma wpe (Fun f es) Q = wpes es (λvs s. Q (fst(f s vs)) (snd(f s vs)))
lemma wpes [] Q = Q []
lemma wpes (e#es) Q = wpe e (λv . wpes es (λvs. Q(v#vs)))

Our standard lemma for the completeness theorem is first proved for
expressions and expression lists by (an easy) simultaneous induction on e
and es:

lemma (∀Q . `e {wpe e Q} e {Q}) ∧ (∀Q . `es {wpes es Q} es {Q})

notes.tex; 21/11/2001; 15:49; p.15

With the help of this lemma in the Assign-case we can prove the key lemma
by induction on c; the other cases go through as usual.

lemma ∀Q . ` {wp c Q} c {Q}

The completeness theorem follows directly:

theorem |= {P}c{Q} =⇒ ` {P}c{Q}

5. Procedures

So far, things were well-understood long before they were modelled in a the-
orem prover. Procedures, however, are different. In the introduction I have
already sketched the history of Hoare logics for recursive procedures. As a
motivation of the technical difficulties, consider the following parameterless
recursive procedure:

proc = if i=0 then skip else i := i-1; CALL; i := i+1

A classic example of the subtle problems associated with reasoning about
procedures is the proof that i is invariant: {i=N} CALL {i=N}. This is done
by induction: we assume {i=N} CALL {i=N} and have to prove {i=N} body
{i=N}, where body is the body of the procedure. The case i=0 is trivial.
Otherwise we have to show {i=N}i:=i-1;CALL;i:=i+1{i=N}, which can be
reduced to {i=N-1} CALL {i=N-1}. But how can we deduce{i=N-1} CALL
{i=N-1} from the induction hypothesis {i=N} CALL {i=N}? Clearly, we
have to instantiate N in the induction hypothesis — after all N is arbitrary
as it does not occur in the program. The problems with procedures are
largely due to unsound or incomplete adaption rules. We follow the solu-
tion of Morris and Kleymann and adjust the value of auxiliary variables
like N with the help of the consequence rule. We also follow Kleymann in
modelling auxiliary variables as a separate concept (as suggested in [4]). Our
main contribution is a generalization from deterministic to nondeterministic
languages.

5.1. SYNTAX AND OPERATIONAL SEMANTICS

Types var, val, state and bexp are defined as in Sect. 2. We start with a
minimal set of commands:

datatype com = Do (state ⇒ state)
| Semi com com (-; - [60 , 60] 10)
| Cond bexp com com (IF - THEN - ELSE - 60)
| While bexp com (WHILE - DO - 60)
| CALL

notes.tex; 21/11/2001; 15:49; p.16

There is only one parameterless procedure in the program. Hence CALL
does not even need to mention the procedure name. There is no separate
syntax for procedure declarations. Instead we declare a HOL constant

consts body :: com

that represents the body of the one procedure in the program.
As before, command execution is described by transitions s −c→ t. The

only new rule is the one for CALL — it requires no comment:

s −body→ t =⇒ s −CALL→ t

This semantics turns out not to be fine-grained enough. The soundness
proof for the Hoare logic below proceeds by induction on the call depth dur-
ing execution. To make this work we define a second semantics s −c−n→ t
which expresses that the execution uses at most n nested procedure invoca-
tions, where n is a natural number. The rules are straightforward: n is just
passed around, except for procedure calls, where it is decremented (Suc n
is n + 1):

s −Do f−n→ f s

[[s0 −c1−n→ s1 ; s1 −c2−n→ s2]] =⇒ s0 −c1 ;c2−n→ s2

[[b s; s −c1−n→ t]] =⇒ s −IF b THEN c1 ELSE c2−n→ t
[[¬b s; s −c2−n→ t]] =⇒ s −IF b THEN c1 ELSE c2−n→ t

¬b s =⇒ s −WHILE b DO c−n→ s
[[b s; s −c−n→ t ; t −WHILE b DO c−n→ u]] =⇒ s −WHILE b DO c−n→ u

s −body−n→ t =⇒ s −CALL−Suc n→ t

By induction on s −c−m→ t we show monotonicity w.r.t. the call depth:

lemma s −c−m→ t =⇒ ∀n. m ≤ n −→ s −c−n→ t

With the help of this lemma we prove the expected relationship between
the two semantics:

lemma exec-iff-execn: (s −c→ t) = (∃n. s −c−n→ t)

Both directions are proved separately by induction on the operational
semantics.

notes.tex; 21/11/2001; 15:49; p.17

5.2. HOARE LOGIC FOR PARTIAL CORRECTNESS

Taking auxiliary variables seriously means that assertions must now depend
on them as well as on the state. Initially we do not fix the type of auxiliary
variables but parameterize the type of assertions with a type variable ′a:

types ′a assn = ′a ⇒ state ⇒ bool

Type constructors are written postfix.
The second major change is the need to reason about Hoare triples in

a context: proofs about recursive procedures are conducted by induction
where we assume that all CALLs satisfy the given pre/postconditions and
have to show that the body does as well. The assumption is stored in a
context, which is a set of Hoare triples:

types ′a cntxt = (′a assn × com × ′a assn)set

In the presence of only a single procedure the context will always be empty
or a singleton set. With multiple procedures, larger sets can arise.

Now that we have contexts, validity becomes more complicated. Ordi-
nary validity (w.r.t. partial correctness) is still what it used to be, except
that we have to take auxiliary variables into account as well:

|= {P}c{Q} ≡ ∀ s t . s −c→ t −→ (∀ z . P z s −→ Q z t)

Auxiliary variables are always denoted by z.
Validity of a context and validity of a Hoare triple in a context are

defined as follows:

||= C ≡ ∀ (P ,c,Q) ∈ C . |= {P}c{Q}
C |= {P}c{Q} ≡ ||= C −→ |= {P}c{Q}

Note that {} |= {P} c {Q} is equivalent to |= {P} c {Q}.
Unfortunately, this is not the end of it. As we have two semantics, −c→

and −c−n→, we also need a second notion of validity parameterized with
the recursion depth n:

|=n {P}c{Q} ≡ ∀ s t . s −c−n→ t −→ (∀ z . P z s −→ Q z t)
||=-n C ≡ ∀ (P ,c,Q) ∈ C . |=n {P}c{Q}
C |=n {P}c{Q} ≡ ||=-n C −→ |=n {P}c{Q}

Finally we come to the proof system for deriving triples in a context:

C ` {λz s. P z (f s)} Do f {P}

[[C ` {P}c1{Q}; C ` {Q}c2{R}]] =⇒ C ` {P} c1 ;c2 {R}

[[C ` {λz s. P z s ∧ b s}c1{Q}; C ` {λz s. P z s ∧ ¬b s}c2{Q}]]

notes.tex; 21/11/2001; 15:49; p.18

=⇒ C ` {P} IF b THEN c1 ELSE c2 {Q}

C ` {λz s. P z s ∧ b s} c {P}
=⇒ C ` {P} WHILE b DO c {λz s. P z s ∧ ¬b s}

[[C ` {P ′}c{Q ′}; ∀ s t . (∀ z . P ′ z s −→ Q ′ z t) −→ (∀ z . P z s −→ Q z t)]]
=⇒ C ` {P}c{Q}

{(P ,CALL,Q)} ` {P}body{Q} =⇒ {} ` {P} CALL {Q}

{(P ,CALL,Q)} ` {P} CALL {Q}

The first four rules are familiar, except for their adaptation to auxiliary vari-
ables. The CALL rule embodies induction and has already been motivated
above. Note that it is only applicable if the context is empty. This shows
that we never need nested induction. For the same reason the assumption
rule (the last rule) is stated with just a singleton context.

The only real surprise is the rule of consequence, which appears in print
in this form for the first time as far as I am aware. Morris [14] and later
Olderog [25] show that the consequence rule with side condition

∀ s. P z s −→ (∀ t . (∀ z ′. P ′ z ′ s −→ Q ′ z ′ t) −→ Q z t)

(which is already close to our side condition) is “adaption complete” for
partial correctness. Olderog also shows completeness of a proof system
based on this rule. Hofmann [6] builds on [27] and shows soundness and
completeness of a Hoare logic where the consequence rule has the following
side condition:

∀ s t z . P z s −→ Q z t ∨ (∃ z ′. P ′ z ′ s ∧ (Q ′ z ′ t −→ Q z t))

The side conditions by Morris and Hofmann are logically equivalent to ours.
But the symmetry of our new version appeals not just for aesthetic reasons
but because one can actually remember it! Furthermore, its soundness proof
is very direct: In order to show C |= {P} c {Q} we assume the validity of
C (which implies |= {P ′} c {Q ′} because of C |= {P ′} c {Q ′}) and prove
|= {P} c {Q}: assuming s −c→ t, |= {P ′} c {Q ′} implies ∀ z . P ′ z s −→
Q ′ z t, which, by the side condition of the consequence rule, implies ∀ z . P
z s −→ Q z t, which is exactly what we need for |= {P} c {Q}.

The proof of the soundness theorem

theorem C ` {P}c{Q} =⇒ C |= {P}c{Q}

requires a generalization: ∀n. C |=n {P} c {Q} is proved instead, from
which the actual theorem follows directly via lemma exec-iff-execn in Sect. 5.1.

notes.tex; 21/11/2001; 15:49; p.19

The generalization is proved by induction on c. The reason for the gener-
alization is that soundness of the CALL rule is proved by induction on the
maximal call depth, i.e. n.

The completeness proof is quite different from the ones we have seen so
far. It employs the notion of a most general triple (or most general formula)
due to Gorelick [5]:

MGT :: com ⇒ state assn × com × state assn
MGT c ≡ (λz s. z = s, c, λz t . z −c→ t)

Note that the type of z has been identified with state. This means that for
every state variable there is an auxiliary variable, which is simply there to
record the value of the program variables before execution of a command.
This is exactly what, for example, VDM offers by allowing you to refer to
the pre-value of a variable in a postcondition [11]. The intuition behind
MGT c is that it completely describes the operational behaviour of c. It is
easy to see that, in the presence of the new consequence rule, {} ` MGT c
implies completeness:

lemma MGT-implies-complete:
{} ` MGT c =⇒ {} |= {P}c{Q} =⇒ {} ` {P}c{Q ::state assn}

Note that the type constraint Q ::state assn is not inferred automatically:
although both pre and postcondition of MGT c are of type state assn, this
does not force Q to have the same type.

In order to discharge {} ` MGT c one proves

lemma MGT-lemma: C ` MGT CALL =⇒ C ` MGT c

The proof is by induction on c. In the While-case it is easy to show that
λz t . (z , t) ∈ {(s, t). b s ∧ s −c→ t}∗ is invariant. The precondition
λz s. z=s establishes the invariant and a reflexive transitive closure induc-
tion shows that the invariant conjoined with ¬ b t implies the postcondition
λz t . z −WHILE b DO c→ t . The remaining cases are trivial.

Using the MGT-lemma (together with the CALL and the assumption
rule) one can easily derive

lemma {} ` MGT CALL

Using the MGT-lemma once more we obtain {} ` MGT c and thus by
MGT-implies-complete completeness.

theorem {} |= {P}c{Q} =⇒ {} ` {P}c{Q ::state assn}

notes.tex; 21/11/2001; 15:49; p.20

5.3. MODULAR EXTENSIONS

Procedures can be extended with nondeterministic choice and local
variables just as we extended the pure while-language in Sect. 2.2: the
operational semantics is the same, and the Hoare rules just need to be
extended with a context C. The proofs are identical as well. But in the case
of local variables the resulting language may not be what one expects: it
has the semantics of dynamic scoping : if the procedure body refers to some
variable, say x, then the execution of that body during the execution of
VAR x = e; CALL will refer to the local x with initial value e. We have
also studied a language with static scoping, but do not discuss the details
in this paper.

5.4. HOARE LOGIC FOR TOTAL CORRECTNESS

This is the most complicated system in this paper. We only show the key
elements and none of the proofs.

For termination we have just one new obvious rule:

body ↓ s =⇒ CALL ↓ s

Validity is defined as expected:

|=t {P}c{Q} ≡ |= {P}c{Q} ∧ (∀ z s. P z s −→ c↓s)
C |=t {P}c{Q} ≡ (∀ (P ′,c ′,Q ′) ∈ C . |=t {P ′}c ′{Q ′}) −→ |=t {P}c{Q}

Instead of the full set of proof rules we merely show those that differ
from the system for partial correctness:

[[wf r ; ∀ s ′. C `t {λz s. P z s ∧ b s ∧ s ′ = s} c {λz s. P z s ∧ (s,s ′) ∈ r}]]
=⇒ C `t {P} WHILE b DO c {λz s. P z s ∧ ¬b s}

[[wf r ; ∀ s ′. {(λz s. P z s ∧ (s,s ′) ∈ r , CALL, Q)}
`t {λz s. P z s ∧ s = s ′} body {Q}]]

=⇒ {} `t {P} CALL {Q}

[[C `t {P ′}c{Q ′};
(∀ s t . (∀ z . P ′ z s −→ Q ′ z t) −→ (∀ z . P z s −→ Q z t)) ∧
(∀ s. (∃ z . P z s) −→ (∃ z . P ′ z s))]]

=⇒ C `t {P}c{Q}

As in the case for the pure while-language, our rules for total correctness
are very similar to those by Kleymann [11]. The side condition in our rule
of consequence looks quite different from the one by Kleymann, but the
two are in fact equivalent:

notes.tex; 21/11/2001; 15:49; p.21

lemma ((∀ s t . (∀ z . P ′ z s −→ Q ′ z t) −→ (∀ z . P z s −→ Q z t)) ∧
(∀ s. (∃ z . P z s) −→ (∃ z . P ′ z s)))

= (∀ z s. P z s −→ (∀ t .∃ z ′. P ′ z ′ s ∧ (Q ′ z ′ t −→ Q z t)))

Kleymann’s version is easier to use, whereas our new version clearly shows
that it is a conjunction of the side condition for partial correctness with
precondition strengthening.

The key difference to the work by Kleymann (and America and de Boer)
is that soundness and completeness

theorem C `t {P}c{Q} =⇒ C |=t {P}c{Q}
theorem {} |=t {P}c{Q} =⇒ {} `t {P}c{Q ::state assn}

are shown for arbitrary, i.e. unbounded nondeterminism. This is a signifi-
cant extension and appears to have been an open problem. The details are
found in a separate paper [18].

6. More procedures

We now generalize from a single procedure to a whole set of procedures
following the ideas of von Oheimb [21]. The basic setup of Sect. 5.1 is
modified only in a few places:

− We introduce a new basic type pname of procedure names.
− Constant body is now of type pname ⇒ com.
− The CALL command now has an argument of type pname, the name

of the procedure that is to be called.
− The call rule of the operational semantics now says

s −body p→ t =⇒ s −CALL p→ t

Note that this setup assumes that we have a procedure body for each
procedure name. If you feel uncomfortable with the idea of an infinity of
procedures, you may assume that pname is the finite subset of all procedure
names that occur in some fixed program.

6.1. HOARE LOGIC

Types assn and and cntxt are defined as in Sect. 5.2, as are |= {P} c {Q},
||= C , |=n {P} c {Q} and ||=-n C . However, we now need an additional
notion of validity C ||= D where D is a set as well. The reason is that
we can now have mutually recursive procedures whose correctness needs to
be established by simultaneous induction. Instead of sets of Hoare triples

notes.tex; 21/11/2001; 15:49; p.22

we may think of conjunctions. We define both C ||= D and its relativized
version:

C ||= D ≡ ||= C −→ ||= D
C ||=-n D ≡ ||=-n C −→ ||=-n D

Our Hoare logic now defines judgements of the form C `̀ D where both
C and D are (potentially infinite) sets of Hoare triples; C ` {P} c {Q}
is simply an abbreviation for C `̀ {(P ,c,Q)}. With this abbreviation the
rules for Do, Semi, If, While and consequence are exactly the same as in
Sect. 5.2. The remaining rules are

[[∀ (P ,c,Q) ∈ C . ∃ p. c = CALL p;
C `̀ {(P ,b,Q). ∃ p. (P ,CALL p,Q) ∈ C ∧ b = body p}]]

=⇒ {} `̀ C

(P ,CALL p,Q) ∈ C =⇒ C ` {P} CALL p {Q}

∀ (P ,c,Q) ∈ D . C ` {P}c{Q} =⇒ C `̀ D
[[C `̀ D ; (P ,c,Q) ∈ D]] =⇒ C ` {P}c{Q}

The CALL and the assumption rule are straightforward generalizations of
their counterparts in Sect. 5.2. The final two rules are structural rules and
could be called conjunction introduction and elimination, because they put
together and take apart sets of triples.

theorem C `̀ D =⇒ C ||= D

As before, we prove a generalization of C ||= D, namely ∀n. C ||=-n D, by
induction on C `̀ D, with an induction on n in the CALL case.

The completeness proof resembles the one in Sect. 5.2 closely: the most
general triple MGT is defined exactly as before, and the lemmas leading
up to completness are simple generalizations:

lemma MGT-implies-complete:
{} `̀ {MGT c} =⇒ |= {P}c{Q} =⇒ {} ` {P}c{Q ::state assn}

lemma MGT-lemma: ∀ p. C `̀ {MGT (CALL p)} =⇒ C `̀ {MGT c}
lemma {} `̀ {mgt . ∃ p. mgt = MGT (CALL p)}
theorem |= {P}c{Q} =⇒ {} ` {P}c{Q ::state assn}

7. Functions

As our final variation on the theme of procedures we study a language
with functions, i.e. procedures that take arguments and return results. Our
functions have exactly one parameter which is passed by value.

notes.tex; 21/11/2001; 15:49; p.23

7.1. SYNTAX AND OPERATIONAL SEMANTICS

The basic types var, val, state and bexp are defined as in Sect. 2. In addition
we have

types expr = state ⇒ val

Commands are also defined as in Sect. 5.1, but extended with function
calls and local variables:

| Fun var expr (- := FUN - 60)
| Var var expr com (VAR - = -; -)

Command Var is familar. Command x := FUN e is meant to pass the
value of e as the (single) parameter to the (single) function in the program
and to assign the result of the function to x. This syntax rules out nested
expressions and thus all the complications treated in Sect. 4. The body of
the function is again found in constant body. Furthermore there are two
distinguished variables arg, the name of the formal parameter, and res, a
variable for communicating the result back to the caller. Function calls are
reduced to procedure calls as follows:

funcall x e ≡ (VAR arg = e; CALL); Do(λs. s(x := s res))

The argument becomes a local variable and is thus not modified by further
function calls in the body. Variable res is not protected like this and it is
the programmer’s responsibility to introduce a local variable if needed.

Note that CALL is still present to allow this two stage execution of
function calls but it is not meant to be used on its own.

The semantics of Fun, the only new command, is obvious:

s −funcall x e→ t =⇒ s −x := FUN e→ t

The rule for local variables is the same as in Sect. 5.2, i.e. we have
dynamic scoping, which is just what we need for the above implementation
of parameter passing.

In essence, this is all there is to say about functions, because we have
reduced function calls to the composition of previously studied language
constructs.

7.2. HOARE LOGIC

Assertions and validity are defined as for procedures. The proof system is
the one from Sect. 5.2 together with the rule for Var discussed in Sect. 5.2,
extended with the obvious rule for function calls:

notes.tex; 21/11/2001; 15:49; p.24

C ` {P}funcall x e{Q} =⇒ C ` {P} x := FUN e {Q}

Soundness and completeness are proved entirely as for procedures.

theorem C ` {P}c{Q} =⇒ C |= {P}c{Q}
theorem {} |= {P}c{Q} =⇒ {} ` {P}c{Q ::state assn}

8. Conclusion

The preceding sections show that a variety of language constructs can be
given a simple Hoare logic in the unified framework of HOL. In particular we
have been able to settle the case of total correctness of recursive procedures
combined with unbounded nondeterminism [18].

Although one would think that Hoare logics formalized in theorem
provers should always come with a completeness proof, this is not so. The
argument used by [8] to explain the absence of a completeness proof is the
ability to fall back on a denotational semantics if the Hoare logic fails. The
authors of [13] even claim that completeness is not a meaningful question in
their setting. This paper has shown that completeness can be established by
standard means even for complicated language constructs. Thus it should
not be ignored.

Acknowledgments I am indebted to Thomas Kleymann and David von
Oheimb for providing the logical foundations and to Markus Wenzel for
the Isar extension of Isabelle: without it the production of the paper from
the Isabelle theories, something I would no longer want to miss, would
have been impossible. Gerwin Klein, Norbert Schirmer and Markus Wenzel
commented on a draft version.

References

1. Pierre America and Frank de Boer. Proving total correctness of recursive procedures.
Information and Computation, 84:129–162, 1990.

2. Krzysztof Apt. Ten Years of Hoare’s Logic: A Survey — Part I. ACM Trans.
Programming Languages and Systems, 3(4):431–483, 1981.

3. Krzysztof Apt. Ten Years of Hoare’s Logic: A Survey — Part II: Nondeterminism.
Theoretical Computer Science, 28:83–109, 1984.

4. Krzysztof Apt and Lambert Meertens. Completeness with finite systems of inter-
mediate assertions for recursive program schemes. SIAM Jornal on Computing,
9(4):665–671, 1980.

5. Gerald Arthur Gorelick. A complete axiomatic system for proving assertions about
recursive and non-recursive programs. Technical Report 75, Dept. of Computer
Science, Univ. of Toronto, 1975.

6. Martin Hofmann. Semantik und Verifikation. Lecture notes, Universität Marburg.
In German, 1997.

notes.tex; 21/11/2001; 15:49; p.25

7. Peter V. Homeier and David F. Martin. Mechanical verification of mutually
recursive procedures. In M.A. McRobbie and J.K. Slaney, editors, Automated
Deduction — CADE-13, volume 1104 of Lect. Notes in Comp. Sci., pages 201–215.
Springer-Verlag, 1996.

8. Bart Jacobs and Erik Poll. A logic for the Java modeling language JML. In
H. Hussmann, editor, Fundamental Approaches to Software Engineering, volume
2029 of Lect. Notes in Comp. Sci., pages 284–299. Springer-Verlag, 2001.

9. Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall, 2nd
edition, 1990.

10. Thomas Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Com-
pleteness Proofs. PhD thesis, Department of Computer Science, University of
Edinburgh, 1998. Report ECS-LFCS-98-392.

11. Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of
Computing, 11:541–566, 1999.

12. Tomasz Kowaltowski. Axiomatic approach to side effects and general jumps. Acta
Informatica, 7:357–360, 1977.

13. Linas Laibinis and Joakim von Wright. Functional procedures in higher-order logic.
In M. Aagaard and J. Harrison, editors, Theorem Proving in Higher Order Logics,
volume 1896 of Lect. Notes in Comp. Sci., pages 372–387. Springer-Verlag, 2000.

14. J.H. Morris. Comments on “procedures and parameters”. Undated and unpublished.
15. Hanne Riis Nielson and Flemming Nielson. Semantics with Applications. Wiley,

1992.
16. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-

book. In V. Chandru and V. Vinay, editors, Foundations of Software Technology
and Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages
180–192. Springer-Verlag, 1996.

17. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. Formal Aspects of Computing, 10:171–186, 1998.

18. Tobias Nipkow. Hoare logics for recursive procedures and unbounded nondetermin-
ism. Draft, 2001.

19. Tobias Nipkow and David von Oheimb. Java `ight is type-safe — definitely. In Proc.
25th ACM Symp. Principles of Programming Languages, pages 161–170, 1998.

20. Tobias Nipkow and Lawrence Paulson. Isabelle/HOL. The Tutorial, 2001. http:
//www.in.tum.de/∼nipkow/pubs/tutorial.html.

21. David von Oheimb. Hoare logic for mutual recursion and local variables. In C. Pandu
Rangan, V. Raman, and R. Ramanujam, editors, Foundations of Software Technol-
ogy and Theoretical Computer Science (FST&TCS), volume 1738 of Lect. Notes in
Comp. Sci., pages 168–180. Springer-Verlag, 1999.

22. David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety
and Hoare Logic. PhD thesis, Technische Universität München, 2001. http://www.
in.tum.de/∼oheimb/diss/.

23. David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001.

24. David von Oheimb and Tobias Nipkow. Hoare logic for NanoJava: Auxiliary
variables, side effects and virtual methods revisited. Submitted for publication,
2001.

25. Ernst-Rd̈iger Olderog. On the notion of expressiveness and the rule of adaptation.
Theoretical Computer Science, 24:337–347, 1983.

notes.tex; 21/11/2001; 15:49; p.26

http://www.in.tum.de/~nipkow/pubs/tutorial.html
http://www.in.tum.de/~nipkow/pubs/tutorial.html
http://www.in.tum.de/~oheimb/diss/
http://www.in.tum.de/~oheimb/diss/

26. Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus
of Constructions. PhD thesis, University of Edinburgh, 1994.

27. Thomas Schreiber. Auxiliary variables and recursive procedures. In TAPSOFT’97:
Theory and Practice of Software Development, volume 1214 of Lect. Notes in Comp.
Sci., pages 697–711. Springer-Verlag, 1997.

notes.tex; 21/11/2001; 15:49; p.27

