
Verified Root-Balanced Trees

Tobias Nipkow?

Technische Universität München
http://www.in.tum.de/~nipkow

Abstract. Andersson introduced general balanced trees, search trees
based on the design principle of partial rebuilding: perform update op-
erations naively until the tree becomes too unbalanced, at which point
a whole subtree is rebalanced. We define and analyze a functional ver-
sion of general balanced trees which we call root-balanced trees. Using
a lightweight model of execution time, amortized logarithmic complex-
ity is verified in the theorem prover Isabelle. Experimental results show
competitiveness of root-balanced with AVL and red-black trees.

1 Introduction

An old idea from the search tree literature is partial rebuilding [26]. Search trees
are not rebalanced during every update operation but are allowed to degenerate
before they are eventually rebalanced in a more drastic manner: a whole subtree
is rebalanced to optimal height (in linear time). We build on the work of Ander-
sson [2] who rebalances only if the height of the tree is no longer logarithmically
bounded by the size of the tree. We call these trees root-balanced. We recast An-
dersson’s ideas in a functional framework and verify their correctness in Isabelle:
the amortized complexity is logarithmic. The main contributions are:

– The (as far as we know) first published executable formulation of root-
balanced trees, imperative or functional. It is expressed in the functional
language of the theorem prover Isabelle/HOL [24,23].

– A lightweight approach to modelling execution time of functional programs.
– The first formal verification of the amortized complexity of root-balanced

trees. We develop the code by refinement and present the main definitions
and theorems for the complexity proof. The full Isabelle definitions and
proofs are found in the online Archive of Formal Proofs [22].

– Logarithm-free code. A direct implementation of Andersson’s algorithms
needs to compute logarithms. Because floating point computations are inex-
act this might lead to different behaviour and different actual complexity.

– The first published empirical evaluation of root-balanced trees. It shows that
they are competitive with AVL and red-black trees.

Note that in a functional setting, amortized complexity reasoning is only valid
if the data structure under consideration is used in a single-threaded manner,
unless one employs lazy evaluation or memoization [25], which we do not.

? Supported by DFG Koselleck grant NI 491/16-1

http://www.in.tum.de/~nipkow

We do not discuss the functional correctness proofs because they follow a
method described elsewhere [21] and are automatic. The challenge is not cor-
rectness but amortized complexity.

2 Basics

Type variables are denoted by ′a, ′b, etc. The notation t :: τ means that term t
has type τ . Type constructors follow postfix syntax, eg ′a set is the type of sets
of elements of type ′a.

The types nat, int and real represent the sets N, Z and R. In this paper we
often drop the coercion functions that are embeddings (like real :: nat → real)
but show nat :: int → nat because it maps the negative numbers to 0.

Lists over type ′a, type ′a list, come with the empty list [], the infix construc-
tor “·”, the infix append operator @, hd (head), tl (tail), and the enumeration
syntax [x 1, . . ., xn].

Note that “=” on type bool means “←→”.

2.1 Trees

datatype ′a tree = 〈〉 | Node (′a tree) ′a (′a tree)

We abbreviate Node l a r by 〈l , a, r〉. The size (|t |) and height (height t) of a
tree are defined as usual, starting with 0 for leaves. In addition we define |t |1 =
|t | + 1. Function inorder is defined canonically. The minimal height is defined
as follows:

min height 〈〉 = 0
min height 〈l , , r〉 = min (min height l) (min height r) + 1

We call a tree balanced iff its height and minimal height differ by at most 1:

balanced t = (height t − min height t ≤ 1)

3 Balancing Trees

A number of imperative algorithms have been published that balance trees in lin-
ear time (eg [11,29]). We present a linear functional algorithm that first projects
the tree to a list in linear time (using accumulation)

inorder2 〈〉 xs = xs
inorder2 〈l , x , r〉 xs = inorder2 l (x · inorder2 r xs)

and builds the balanced tree from that:

bal n xs =
(if n = 0 then (〈〉, xs)
else let m = n div 2;

(l , ys) = bal m xs;
(r , y) = bal (n − 1 − m) (tl ys)

in (〈l , hd ys, r〉, y))

2

bal list n xs = (let (t , ys) = bal n xs in t)

bal tree n t = bal list n (inorder2 t [])

balance tree t = bal tree |t | t

This algorithm is most likely not new but we need it and its properties for
rebalancing subtrees.

Lemma 1 The order of elements is preserved and the result is balanced:

n ≤ |t | −→ inorder (bal tree n t) = take n (inorder t)
balanced (bal tree n t)

In order to avoid confusion with other notions of balancedness we refer to the
above notion as optimally balanced in the text.

4 Time

There have been a number of proposals in the literature on how to model and
analyze execution time of functional programs within functional programs or
theorem provers (see Section 9). The key techniques are type systems and mon-
ads. We will also make use of a resource monad to accumulate execution time.
The result is a lightweight approach to modelling and analyzing call-by-value
execution time.

The basic principle of our approach is that the users define their programs
in the monad and derive two separate functions from it, one that performs the
computation and one that yields the time. Our time monad is based on

datatype ′a tm = TM ′a nat

which combines a value with an internal clock:

val (TM v n) = v
time (TM v n) = n

The standard monadic combinators are

s >>= f = (case s of
TM u m ⇒ case f u of

TM v n ⇒ TM v (m + n))
return v = TM v 0

where >>= (bind) adds the clocks of two computations and return is for free.
Below we employ the usual do-notation instead of bind.

For simplicity our clock counts only function calls. In order to charge one
clock tick for a function call we define the infix operator =1 that does just that:

lhs =1 rhs abbreviates lhs = (rhs >>= tick) where tick v = TM v 1.

3

That is, when defining a function f whose time we want to measure we need to
write every defining equation f p = t as f p =1 t.

It is up to the users in how much detail they model the execution time, that
is, how much of a computation they embed in the monad. In this paper we
count all function calls (via the monad) except for constructors and functions
on booleans and numbers. It would be easy to lift all of the latter functions
into the monad as well, say with unit costs; this would merely lead to bigger
constants in applications. This means that the concrete constants that appear
in the time formulas we will prove are an underapproximation but could be made
more precise if desired.

Let us look at an example, the monadic definition of function inorder2 tm:

inorder2 tm 〈〉 xs =1 return xs
inorder2 tm 〈l , x , r〉 xs =1 do {
rs ← inorder2 tm r xs;
inorder2 tm l (x · rs)
}

From every monadic function f tm we define the projections f and t f on the
value and the time. For inorder2 tm these are

inorder2 t xs = val (inorder2 tm t xs)
t inorder2 t xs = time (inorder2 tm t xs)

From these definitions we prove (automatically, by simplification) recursion equa-
tions that follow the recursion of the monadic version:

inorder2 〈〉 xs = xs
inorder2 〈l , x , r〉 xs = (let rs = inorder2 r xs in inorder2 l (x · rs))

t inorder2 〈〉 xs = 1
t inorder2 〈l , x , r〉 xs =
t inorder2 r xs + t inorder2 l (x · inorder2 r xs) + 1

These, rather than the monadic versions, are used in the rest of the verification.
For presentation reasons we sometimes expand lets if the let-bound variable
occurs exactly once in the body, as in the definition of inorder2 in Section 3.

For the running time function it is often possible to prove some non-recursive
bound or even an exact value, for example

t inorder2 t xs = 2 ∗ |t | + 1

The step from f tm to f needs some attention because it must not change
the running time in the process: f is the actual code, f tm is only a means for
describing the computation of the value and its time complexity simultaneously.
For example, f tm x = do { y ← g x ; return (h y y)} should be transformed
into f x = (let y = g x in h y y), not into f x = h (g x) (g x) because the latter
evaluates g x twice. Of course we cannot prove this because HOL functions are
extensional and have no running time complexity. We can only argue that an

4

intensional interpretation of the derived equation for f has the running time
ascribed to it by the counter in the definition of f tm. Our argument is that in
the derivation of the equations for f we use only rewriting with the definitions
of f tm and f and with the following rules for pushing val inside and eliminating
the clock.

val (return x) = x
val (m >>= f) = (let x = val m in val (f x))
val (tick x) = x
val (let x = t in f x) = (let x = t in val (f x))
val (if c then x else y) = (if c then val x else val y)

There are also obvious rules for case-expressions. All these rules do not change
the running time of the intensional interpretation of the terms. The rules for val
do not duplicate or erase parameters.

Outside of this section we do not show the original monadic definition of
functions f tm but only the derived equations for f ; the definition of t f is not
shown either, it can be inferred from f.

Below we need the following results about the running times of the functions
size tree (normally shown as |.|) and bal tree:

Lemma 2 t size tree t = 2 ∗ |t | + 1 and t bal tree |xs| xs = 4 ∗ |xs| + 3

Note that the soundness of our approach depends on the users observing
data abstraction: monadic definitions must only use the monadic combinators
>>= and return (and =1 or tick) but must not take monadic values apart, e.g. by
pattern matching on TM. Alternatively one can write a tool that takes a normal
function definition for f and generates the definition for t f from it.

5 Root-Balanced Trees: Insertion

Root-balanced trees are (binary) search trees. To express that the elements in
the trees must be ordered we employ Isabelle’s type classes [19,32]. In the rest of
the paper we assume that the type variable ′a in ′a tree is of class linorder, i.e.,
there are predicates ≤ and < on ′a that form a linear order. Instead of using ≤
and < directly we define a 3-way comparison function cmp:

datatype cmp val = LT | EQ | GT
cmp x y = (if x < y then LT else if x = y then EQ else GT)

Root-balanced trees should satisfy some minimal balance criterion at the
root, something like height t ≤ c ∗ log2 |t |. We make this minimal balance
criterion a parameter of our development: bal i :: nat → nat → bool where the
subscript stands for “insertion”. The two arguments of bal i are the size and the
height of the tree. The parameter bal i is subject to two assumptions:

Assumption 1 (Monotonicity) bal i n h ∧ n ≤ n ′ ∧ h ′ ≤ h −→ bal i n
′ h ′

5

Assumption 2 bal i |t | (height (balance tree t))

Insertion works as follows. As for ordinary search trees, it searches for the
element that is to be inserted. If that search ends up at a leaf, that leaf is replaced
by a new singleton node. Then it checks if the new node has unbalanced the tree
at the root (because it became too high). If so, then on the way back up it checks
at every subtree if that is balanced, until it finds a subtree that is unbalanced
and which then gets rebalanced. Thus the algorithm has to distinguish between
unbalanced, balanced and unchanged trees (in case the element to be inserted
was already in the tree):

datatype ′a up = Same | Bal (′a tree) | Unbal (′a tree)

That is, if (a recursive call of) insertion returns Same, the tree remains un-
changed; if it returns Bal t, the new subtree is t and no (more) rebalancing is
necessary; if it returns Unbal t, the new subtree is t and some subtree higher up
needs to be rebalanced because the root has become unbalanced.

5.1 A Naive Implementation

To reduce the complexity of the verification we start with a first inefficient
implementation and show that it is functionally correct. A second efficient im-
plementation will then be shown to be functionally equivalent and to have the
desired complexity.

Function ins :: nat → nat → ′a → ′a tree → ′a up inserts an element:

ins n d x 〈〉 =
(if bal i (n + 1) (d + 1) then Bal 〈〈〉, x , 〈〉〉 else Unbal 〈〈〉, x , 〈〉〉)
ins n d x 〈l , y , r〉 = (case cmp x y of

LT ⇒ up y r False (ins n (d + 1) x l)
| EQ ⇒ Same
| GT ⇒ up y l True (ins n (d + 1) x r))

Parameter n is the size of the whole tree, parameter d the depth of the recursion,
i.e. the distance from the root. Both parameters are needed in order to decide
at the leaf level if the tree has become unbalanced because that information is
needed on the way back up. Checking and rebalancing is performed by function
up below, where sib is the sibling of the subtree inside u, twist indicates whether
it is the left or right sibling and x is the contents of the node:

up x sib twist u =
(case u of

Same ⇒ Same
| Bal t ⇒ Bal (node twist t x sib)
| Unbal t ⇒

let t ′ = node twist t x sib;
h ′ = height t ′;
n ′ = |t ′|

in if bal i n
′ h ′ then Unbal t ′ else Bal (balance tree t ′))

6

node twist s x t = (if twist then 〈t , x , s〉 else 〈s, x , t〉)

Obviously ins increases the size by 1 (if the element is not there already);
the height changes as follows:

ins n d x t = Bal t ′ −→ height t ′ ≤ height t + 1
ins n d x t = Unbal t ′ −→ height t ≤ height t ′ ≤ height t + 1

In the first case the height may actually shrink due to rebalancing. The proof is
by simultaneous induction and relies on Assumption 1 and 2.

The return value Unbal signals that the tree has become unbalanced at the
root. Formally:

Lemma 3 ins n d x t = Unbal t ′ −→ ¬ bal i (n + 1) (height t ′ + d)

The proof is by induction and uses monotonicity of bal i. An easy consequence:

Lemma 4 ins n (d + 1) x l = Unbal l ′ ∧ bal i n (height 〈l , y , r〉 + d) −→
height r < height l ′

There is a symmetric lemma for r instead of l. These two lemmas tell us that if
insertion unbalances a balanced tree, then it climbs back up what has become
the longest path in the tree.

The top-level insertion function is insert :

insert x t = (case ins |t | 0 x t of
Same ⇒ t
| Bal t ′⇒ t ′)

Note that the call of ins in insert cannot return Unbal because (by definition of
up) this only happens if the tree is balanced, which contradicts Lemma 3:

Lemma 5 |t | ≤ n −→ ins n 0 a t 6= Unbal t ′

Hence proofs about insert do not need to consider case Unbal.

5.2 An Efficient Implementation

The above implementation computes the sizes and heights of subtrees explicitly
and repeatedly as it goes back up the tree. We will now perform that computation
incrementally. Of course one can store that information in each node but the
beauty of this search tree is that only at the very root we need to store some
extra information, the size of the tree. The incremental version of the algorithm
works with a modified data type ′a up2

datatype ′a up2 = Same2 | Bal2 (′a tree) | Unbal2 (′a tree) nat nat

where Unbal2 t n h passes n and h, the size and height of t, back up the tree.
The new version of function up is up2:

7

up2 x sib twist u =
(case u of

Same2 ⇒ Same2
| Bal2 t ⇒ Bal2 (node twist t x sib)
| Unbal2 t n1 h1 ⇒

let n2 = |sib|;
h2 = height sib;
t ′ = node twist t x sib;
n ′ = n1 + n2 + 1;
h ′ = max h1 h2 + 1

in if bal i n
′ h ′ then Unbal2 t ′ n ′ h ′ else Bal2 (bal tree n ′ t ′))

Note that instead of balance tree we call bal tree because that avoids the compu-
tation of the size of the tree that we have already. There are also corresponding
new versions of ins and insert :

ins2 n d x 〈〉 =
(if bal i (n + 1) (d + 1) then Bal2 〈〈〉, x , 〈〉〉 else Unbal2 〈〈〉, x , 〈〉〉 1 1)
ins2 n d x 〈l , y , r〉 = (case cmp x y of

LT ⇒ up2 y r False (ins2 n (d + 1) x l)
| EQ ⇒ Same2
| GT ⇒ up2 y l True (ins2 n (d + 1) x r))

insert2 x (t , n) = (case ins2 n 0 x t of
Same2 ⇒ (t , n)
| Bal2 t ′⇒ (t ′, n + 1))

Note that the top-level function insert2 operates on pairs (t , n) where n = |t |.
The relationship between ins/insert and ins2/insert2 is easy to state and prove:

(ins2 n d x t = Same2) = (ins n d x t = Same)
(ins2 n d x t = Bal2 t ′) = (ins n d x t = Bal t ′)
(ins2 n d x t = Unbal2 t ′ n ′ h ′) =
(ins n d x t = Unbal t ′ ∧ n ′ = |t ′| ∧ h ′ = height t ′)

(insert2 x (t , |t |) = (t ′, n ′)) = (t ′ = insert x t ∧ n ′ = |t ′|)

Case Unbal2 in up2 is suboptimal because sib is traversed twice. But instead
of introducing a combined size and height function it turns out we can simply
drop the computation of height sib. The reason is that, if initially balanced, the
tree becomes unbalanced only if we have inserted a new node at the end of a
longest path, which means that the height is determined by that path alone.
This is what Lemma 4 expresses. The final version up3 is obtained from up2 by
replacing the right-hand side of case Unbal2 with the following expression:

let n2 = |sib|;
t ′ = node twist t x sib;
n ′ = n1 + n2 + 1;
h ′ = h1 + 1

in if bal i n
′ h ′ then Unbal2 t ′ n ′ h ′ else Bal2 (bal tree n ′ t ′)

8

The corresponding insertion functions ins3/insert3 look like ins2/insert2 but
call up3/ins3. Function insert3 is the final implementation of insertion.

The relationship between level 2 and 3 requires that the tree is balanced and
is more involved to prove:

bal i n (height t + d) −→ ins3 n d x t = ins2 n d x t
bal i n (height t) −→ insert3 x (t , n) = insert2 x (t , n)

The precondition is needed for using Lemma 4.
We will move silently between the three levels using the above equivalences.

5.3 Amortized Complexity

In the worst case, insertion can require a linear amount of work because the whole
tree has to be rebalanced. We will show that each rebalancing must be preceded
by a linear number of insertions without rebalancing over which the cost of the
eventual rebalancing can be spread, increasing the cost of each insertion only by
a constant. If bal i is defined such that the height of balanced trees is logarithmic
in the size, insertion has logarithmic amortized cost.

The core of the potential function argument by Andersson [2] is the imbalance
of a node:

imbal 〈〉 = 0
imbal 〈l , , r〉 = nat |int |l | − int |r || − 1

Thus imbal 〈l , , r〉 is the absolute value of the difference in size of l and r, minus
1. Because the subtraction of 1 is at type nat, it is cut off at 0. A consequence of
subtracting 1 (which Andersson [1] does not do) will be that optimally balanced
trees have potential 0.

The key property of imbal is that insertion into a subtree can increase the
imbalance of a node by at most 1: defining δ t s = real(imbal t) − real(imbal s)
we obtain

Lemma 6 ins n d x t = Bal t ′ ∨ ins n d x t = Unbal t ′ −→
δ (node tw t ′ y s) (node tw t y s) ≤ 1

This follows by definition of imbal from the fact that the height of t ′ can have
increased by at most one.

Now we add another assumption about bal i: when we climb back up the tree
after an insertion and find an unbalanced node whose higher child (where we
must have come from) is balanced, then the imbalance of the node is proportional
to its size:

Assumption 3 ¬ bal i |t | (height t) ∧ bal i |hchild t | (height (hchild t)) ∧ t 6=
〈〉 −→ |t |1 ≤ e ∗ (imbal t + 1)

where hchild 〈l , , r〉 = (if height l ≤ height r then r else l) and e is some real
number greater 0.

We define the actual potential function Φ as the sum of all imbalances in a
tree, scaled by 6 ∗ e:

9

Φ 〈〉 = 0
Φ 〈l , x , r〉 = 6 ∗ e ∗ imbal 〈l , x , r〉 + Φ l + Φ r

The factor 6 comes from the complexities of the size computations and the
rebalancing. Both are linear, but with factors 2 and 4 (Lemma 2). These linear
complexities need to be paid for by the potential.

Clearly 0 ≤ Φ t, as is required of a potential function. Moreover, the potential
of a balanced tree is 0:

Lemma 7 Φ (balance tree t) = 0

The main theorem expresses that the amortized complexity of insert3 is linear
in the height of the tree.

Theorem 1 bal i |t | (height t) ∧ insert3 a (t , |t |) = (t ′, n ′) −→
t insert3 a (t , |t |) + Φ t ′ − Φ t ≤ (6 ∗ e + 2) ∗ (height t + 1) + 1

Now we plug that result into a framework for amortized analysis, and finally
we show that for certain interpretations of bal i and e, the height of the tree is
logarithmic in the size.

Instantiating the Framework We use an existing framework [20] for the
analysis of the amortized complexity of data structures. It guarantees that, given
certain key theorems, the data structure indeed has the claimed complexity. We
instantiate the framework as follows: The state space consists of pairs (t , n).
The initial state is (〈〉, 0). The invariant is λ(t , n). n = |t | ∧ bal i |t | (height t);
the invariance proof relies on asumptions 1 and 2. The potential function is λ(t ,
n). Φ t. The amortized complexity of insert3 x (t , n) is bounded from above by
(6 ∗ e + 2) ∗ (height t + 1) + 1 (Theorem 1).

Logarithmic Height So far the verification was parameterized by bal i and e
subject to some assumptions. Now we give a concrete instantiation that guaran-
tees a logarithmic bound on the height. We follow Andersson [2] and define

bal i n h = h ≤ dc ∗ log2 (n + 1)e (1)

for some arbitrary c > 1.
We have to show that all assumptions are satisfied. Assumption 1 (Mono-

tonicity) clearly holds. Assumption 2 is a consequence of the lemma height
(balance tree t) = nat dlog2 (|t | + 1)e. Assumption 3 follows by setting

e = 21/c/(2 − 21/c) (2)

Thus we know that (1) and (2) satisfy the above parameterized complexity
analysis. Because we proved that bal i is an invariant, we know that the height of
the tree is bounded from above by dc ∗ log2 |t |1e. Thus the amortized complexity
of insertion is bounded from above by (6 ∗ e + 2) ∗ (dc ∗ log2 |t |1e + 1) + 1.

10

6 Root-Balanced Trees: Deletion

The key idea is to perform standard deletions (no balancing) until enough dele-
tions have occurred to pay for rebalancing at the root. This means that the data
structure needs to maintain a counter of the number of deletions; the counter
is reset when the root is rebalanced because of a deletion. Because balancing is
linear, any fixed fraction of the size of the tree will work. We parameterize the
whole development by that fraction, a constant cd > 0. Thus the balance test
bald :: nat → nat → bool to be used after each deletion is defined as

bald n dl = (dl < cd ∗ (n + 1))

where n is the number of nodes in the tree and dl the number of deletions that
have occurred since the last rebalancing after a deletion.

We extend the development of the previous section with a deletion func-
tion and a new top-level insertion function. Many of the existing functions and
lemmas are reused in the extended setting.

6.1 A Naive Implementation

The main supporting lemmas are proved about an implementation where the size
of the tree is not cached. That is rectified in a second step. The new top-level
insertion function insertd operates on a pair of a tree and the deletion counter.
We build upon function ins from Section 5.1.

insertd x (t , dl) = (case ins (|t | + dl) 0 x t of
Same ⇒ t
| Bal t ′⇒ t ′,
dl)

Why is the deletion counter added to the size? That way the sum stays invariant
under deletion and the invariant bal i (|t | + dl) (height t) for insertion will also
remain invariant under deletion.

Deletion works as for unbalanced trees. The deletion function del returns
′a tree option to signal whether the element was in the tree or not:

datatype ′a option = None | Some ′a

del x 〈〉 = None
del x 〈l , y , r〉 =
(case cmp x y of

LT ⇒ upd y r False (del x l)
| EQ ⇒ if r = 〈〉 then Some l

else let (a ′, r ′) = del min r in Some 〈l , a ′, r ′〉
| GT ⇒ upd y l True (del x r))

del min 〈l , x , r〉 =
(if l = 〈〉 then (x , r) else let (y , l ′) = del min l in (y , 〈l ′, x , r〉))

11

upd x sib twist u = (case u of
None ⇒ None
| Some t ⇒ Some (node twist t x sib))

The top-level deletion function rebalances the root if necessary and maintains
the deletion counter:

delete x (t , dl) =
(case del x t of

None ⇒ (t , dl)
| Some t ′⇒ if bald |t ′| (dl + 1) then (t ′, dl + 1) else (balance tree t ′, 0))

6.2 An Efficient Implementation

Just like before, we optimize insertion in two steps. First we cache the size n.
That is, the data structure is now a triple (t , n, dl). Thus insertd becomes

insertd2 x (t , n, dl) = (case ins2 (n + dl) 0 x t of
Same2 ⇒ (t , n, dl)
| Bal2 t ′⇒ (t ′, n + 1, dl))

In another optimization step we call ins3 instead of ins2:

insertd3 x (t , n, dl) = (case ins3 (n + dl) 0 x t of
Same2 ⇒ (t , n, dl)
| Bal2 t ′⇒ (t ′, n + 1, dl))

Function delete is optimized in one step:

delete2 x (t , n, dl) =
(case del x t of

None ⇒ (t , n, dl)
| Some t ′⇒ let n ′ = n − 1;

dl ′ = dl + 1
in if bald n ′ dl ′ then (t ′, n ′, dl ′) else (bal tree n ′ t ′, n ′, 0))

Functions insertd3 and delete2 are the final top level functions.

6.3 Amortized Complexity

The new potential function Φd is the sum of of the previous potential function
and an additive term that charges each deletion its share of the overall cost of
rebalancing at the root:

Φd (t , n, dl) = Φ t + 4 ∗ dl/cd
The factor 4 is due to the cost of bal tree (see Lemma 2).

The amortized complexity of insertion is the same as before:

Theorem 2 insertd a (t , dl) = (t ′, dl ′) ∧ bal i (|t | + dl) (height t) −→
t insertd3 a (t , |t |, dl) + Φ t ′ − Φ t ≤ (6 ∗ e + 2) ∗ (height t + 1) + 1

Deletion is similar but its complexity also depends on cd:

Theorem 3 t delete2 x (t , |t |, dl) + Φd (delete2 x (t , |t |, dl)) − Φd (t , |t |, dl)
≤ (6 ∗ e + 1) ∗ height t + 4/cd + 4

12

Instantiating the Framework Like in Section 5.3 we instantiate the generic
amortized complexity framework: The state space consists of triples (t , n, dl).
The initial state is (〈〉, 0, 0). The invariant is

λ(t , n, dl). n = |t | ∧ bal i (|t | + dl) (height t) ∧ bald |t | dl

The potential function is Φd. The amortized complexity of insertd3 x (t , n, dl)
is bounded from above by (6 ∗ e + 2) ∗ (height t + 1) + 1 (Theorem 2). The
amortized complexity of delete2 x (t , n, dl) is bounded from above by (6 ∗ e +
1) ∗ height t + 4/cd + 4 (Theorem 3).

Logarithmic Height We interpret bal i and e as in definitions (1) and (2)
above. However, the proof of logarithmic height in that section no longer works
because the invariant bal i |t | (height t) has become bal i (|t | + dl) (height t).
Following Andersson [2] we introduce another parameter b > 0, define

cd = 2b/c − 1 (3)

and prove that the invariant implies height t ≤ db + log2 |t |1e. Overall, the
amortized complexity is bounded by (6 ∗ e + 2) ∗ (db + log2 |t |1e + 1) + 1
(for insertion) and (6 ∗ e + 1) ∗ db + log2 |t |1e + 4/cd + 4 (for deletion).

7 Avoiding Logarithms

The one remaining trouble spot is the logarithm in the computation of bal i.
Implementing it in floating point invalidates the complexity analysis because of
rounding errors. As a result, trees may get rebalanced earlier or later than in
the mathematical model, which could lead to a different complexity. This was
not discussed by any of the previous analyses of this data structure.

We implement bal i n h by a table lookup. The idea is to construct a table
bal tab :: nat list such that bal tab ! h (where xs ! n is the n-th element of xs,
starting with 0) is the least n such that h ≤ dc ∗ log2 (n + 1)e and thus

bal i n h = (bal tab ! h ≤ n)

That is, we have reduced a test involving the log function to a table lookup.
Of course tables are finite. Hence we can only guarantee partial correctness,

up to some fixed value of h. But because h is logarithmic in the size of the tree,
a small table suffices to hold enough values to cater for any tree that can be
stored (for example) in the 64-bit address space.

The definition of bal tab is straightforward: for a given c, set

bal tab ! h = b2(h − 1)/cc (4)

for h = 0 up to some maximum value. The difficulty is obtaining a verified ta-
ble because the exponent (h − 1)/c is in general not an integer. We solve this

13

difficulty by result checking: we compute bal tab externally (e.g. in some pro-
gramming language), define bal tab with the values obtained, and have Isabelle
prove automatically that bal tab is correct. We go through this process step by
step.

First we fix some concrete c, compute bal tab up to a sufficiently large size
of the tree, and define bal tab in Isabelle. For example, for c = 3/2 we have a
table of 50 elements if we stop at 233:

bal tab = [0, 1, 1, 2, 4, 6, 10, 16, ..., 2705659852, 4294967296]

Then we verify the correctness of bal tab in two steps. First we prove auto-
matically that the values satisfy (4). This relies on a specialized proof method
named approximation [15] based on interval arithmetic. It can prove proposi-
tions like 5 ≤ x ≤ 7 −→ log2 x ≤ x − 21/10, in particular if there are no free
variables, e.g. log2 5 ≤ 3/2 ∗ log2 3. It proves in a few seconds that

Lemma 8 ∀ i<length bal tab. bal tab ! i = b2(i − 1)/cc

By composition with some pre-proved generic lemmas the desired correctness
proposition for our concrete bal tab follows:

h < length bal tab −→ bal i n h = (bal tab ! h ≤ n)

Finally note that although bal tab is a list, it can be implemented as an
immutable array.

8 Experimental Results

We have implemented root-balanced trees in Standard ML (with the help of Isa-
belle’s code generator [5,12]) and compared their performance with those of two
implementations of AVL and red-black trees [21]. To avoid floating point arith-
metic, the tabulation approach from Section 7 was used. Keys are unbounded
integers. The code was compiled with Poly/ML 5.6 [17] and executed under
Linux on an Intel Core i7-2700K, 3.5 GHz fixed, and 16 GB RAM. We measured
the total CPU time used, including garbage collection.

The table in Figure 1 summarizes the results of our measurements. Each
of the tests is executed with 105 elements in the tree. Each such test case was
executed 100 times with each implementation to reduce statistical variations due
to randomization and garbage collection.

Each test is executed with two versions of root-balanced trees: one where c =
cd = 1.2 and one where c = cd = 1.5. They are called Root-Bal. 1.2 and Root-
Bal. 1.5. In principle c and cd are independent but we have identified them
to reduce the number of versions to consider. The identification makes sense
because in both cases a larger constant means lazier rebalancing.

We compare two kinds of workloads: uniformly distributed inputs (“Ran-
dom”) and decreasing inputs n, . . . , 1 (“Sorted”).

First we look at the upper part of the table with relative timing figures for
insertion, deletion and search. The numbers are relative to Root-Bal. 1.5. For

14

AVL Red-Black Root-Bal. 1.2 Root-Bal. 1.5

Insert Random 1.1 1.7 1.1 1

Insert Sorted 0.3 0.7 1.6 1

Delete Random 1.3 1.6 1.0 1

Delete Sorted 2.0 0.9 1.1 1

Search Random 0.9 1.1 1.0 1

Search Sorted 1.5 1.3 1.0 1

Path Length Random 0.8 0.9 0.9 1

Path Length Sorted 1.0 1.0 1.0 1

Fig. 1. Experimental Results

example, Insert Random with red-black trees takes 1.7 times longer than with
root-balanced trees where c = cd = 1.5.

The insertion tests measure how long it takes to insert n elements into an
initially empty tree, in random or in sorted order. In Insert Random, the two
root-balanced trees beat AVL and red-black trees because root-balanced trees
require less restructuring: randomly generated trees are already reasonably bal-
anced. For sorted inputs, the trees get out of balance all the time and partial
rebalancing becomes more costly than the local modifications in AVL and red-
black trees. This is the only place where our choice of c’s has a significant impact.

Deletion starts with the tree created by the corresponding insertion run and
deletes all elements in random or sorted order. For random inputs, the perfor-
mance of all four trees is almost the same. For sorted input, root-balanced trees
beat AVL trees and are only slightly slower than red-black trees.

Searches start with the tree created by the corresponding insertion run; all
elements in the tree are searched in random or sorted order. With random in-
put there is very little difference between the four search trees. Search Sorted
shows a noticeable slowdown for red-black and AVL trees. This could be a cache
phenomenon because the nodes of red-black and AVL trees are larger.

Our measurements for insertion and deletion (roughly) confirm those by
Galperin and Rivest [11], although they use weight-balanced rather than our
height-balanced trees. The situation w.r.t. searches is more complicated. Their
Figure 4 shows that with random input, searching in root-balanced trees is 4
times faster than in red-black trees; they do not offer an explanation. In con-
trast, our data shows very little difference between the different kinds of search
trees. Since all the trees we tested are binary search trees, the search time should
only depend on their shape (ignoring cache issues, which favour the smaller root-
balanced trees). If we search for all the elements in a tree (as we do in our Search
tests), the search time should be proportional to the internal path length of the
tree (the sum of the lengths of all paths from the root to a node). The last two
lines in Figure 1 show that the internal path lengths are relatively close together
for Random and practically identical for Sorted. This confirms our measure-
ments of search times and suggests that the discrepancy between root-balanced
and other trees in Search Sorted is indeed due to cache behaviour.

15

9 Related Work

There is a rich literature on resource analysis and we can only mention the most
relevant work. The problem of inferring cost functions for functional programs
has been studied, for example, by Sands [28] and Vasconcelos and Hammond [30].
Early work on automatic complexity analysis includes Wegbreit’s Metric sys-
tem [31] for LISP, Le Métayer’s Ace system [16] for FP, and Benzinger’s ACA [4]
system for Nuprl. The recent work by Hoffmann et al. (e.g. [13,14]) is particu-
larly impressive (although currently restricted to polynomials). Type systems are
a popular framework for tracking resources [7,8,18]. The last two references fol-
low the same monadic, dependently typed approach in different theorem provers.
Our approach is similar but the running times are not tracked on the level of
types but on the level of values. However, none of these papers makes an explicit
connection to some cost model also formalized in the theorem prover. This is
what sets Atkey’s work [3] apart. He formalizes a separation logic that supports
amortized resource analysis for an imperative language in Coq and proves the
logic correct w.r.t. a semantics. Verified cost analyses for functional language
have also been studied [10,9]. In summary one can say that there is a whole
spectrum of approaches that differ in expressive power, in the complexity of the
examples that have been dealt with, and in automation. Of the references above,
only McCarthy et al. [18] has examples involving logarithms (instead of merely
polynomials) and they are much simpler than root-balanced trees. Like this pa-
per and our earlier work [21], the paper by Charguéraud and Pottier [6] is at
the complex, interactive end: they verify the almost-linear amortized complexity
of a Union-Find implementation in OCaml in Coq using a separation logic with
time credits.

The idea of rebuilding whole substructures of a data structure, but only at
intervals, goes back at least to Overmars and van Leeuwen [26,27] who called
it partial rebuilding and applied it to weight-balanced trees. Partial rebuilding
was again applied to weight-balanced trees by Galperin and Rivest [11] where
the resulting data structure is called a scapegoat tree. We build on Andersson’s
work [1,2] who realized that one can apply partial rebuilding to trees balanced
only at the root, which he called trees of balanced height [1] and later general
balanced trees [2]. We call them root-balanced to emphasize the restriction of
the balance criterion to the root. All these publications are high-level in that
algorithms are described in words and the proofs are based on intuition rather
than code. Our proofs roughly follow Andersson [2, Section 3] whose arguments
are very high-level. In particular, he does not spell out the potential function.
In Section 4 he performs a more precise analysis to obtain smaller constants,
but now employing a potential function that can look into the future, an ad hoc
concept. He argues informally that this concept is appropriate for the problem
at hand. In contrast, we provide an explicit potential function of the standard
kind. Andersson does not discuss the complications entailed by the logarithm in
the balance test.

16

10 Conclusion

We have presented and verified a functional implementation of the general bal-
anced trees by Andersson [2] in Isabelle. With the help of a lightweight monadic
framework for modelling execution time we verified that inserion and deletion
have amortized logarithmic complexity. We have also shown how to avoid com-
puting with logarithms, which a direct implementation of Andersson’s balance
criterion would require. Finally we have presented experimental results showing
that root-balanced trees are competitive with AVL and red-black trees.

Acknowledgement Johannes Hölzl suggested the tabulation approach. Manuel
Eberl ran the measurements. One of the referees suggested valuable improve-
ments to the time monad.

References

1. Andersson, A.: Improving partial rebuilding by using simple balance criteria. In:
Dehne, F., Sack, J.R., Santoro, N. (eds.) Algorithms and Data Structures (WADS
’89). LNCS, vol. 382, pp. 393–402. Springer (1989)

2. Andersson, A.: General balanced trees. J. Algorithms 30(1), 1–18 (1999)

3. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in
Computer Science 7(2) (2011)

4. Benzinger, R.: Automated higher-order complexity analysis. Theor. Comput. Sci.
318(1-2), 79–103 (2004)

5. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z.,
McKinna, J., Pollack, R. (eds.) Types for Proofs and Programs (TYPES 2000).
LNCS, vol. 2277, pp. 24–40. Springer (2002)

6. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and
amortized complexity of an efficient union-find implementation. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 137–153. Springer (2015)

7. Crary, K., Weirich, S.: Resource bound certification. In: Proc. 27th Symposium on
Principles of Programming Languages. pp. 184–198. POPL ’00, ACM (2000)

8. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Proc. 35th Symposium on Principles of Programming
Languages. pp. 133–144. POPL ’08, ACM (2008)

9. Danner, N., Licata, D.R., Ramyaa, R.: Denotational cost semantics for functional
languages with inductive types. In: Proc. International Conference on Functional
Programming. pp. 140–151. ICFP 2015, ACM (2015)

10. Danner, N., Paykin, J., Royer, J.: A static cost analysis for a higher-order language.
In: Proc. Workshop Programming Languages Meets Program Verification. pp. 25–
34. PLPV ’13, ACM (2013)

11. Galperin, I., Rivest, R.L.: Scapegoat trees. In: Ramachandran, V. (ed.) Proc.
Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms. pp.
165–174 (1993)

12. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming
(FLOPS 2010). LNCS, vol. 6009, pp. 103–117. Springer (2010)

17

13. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

14. Hoffmann, J., Das, A., , Weng, S.C.: Towards automatic resource bound analysis
for OCaml. In: Proc. 44th Symposium on Principles of Programming Languages.
pp. 359–373. POPL ’17, ACM (2017)

15. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In:
Reis, G., Théry, L. (eds.) Programming Languages for Mechanized Mathematics
Systems (ACM SIGSAM PLMMS 2009). pp. 38–45 (2009)

16. Le Métayer, D.: ACE: An automatic complexity evaluator. ACM Trans. Program.
Lang. Syst. 10(2), 248–266 (1988)

17. Matthews, D.: Poly/ML home page (2017), http://www.polyml.org/
18. McCarthy, J.A., Fetscher, B., New, M.S., Feltey, D., Findler, R.B.: A Coq library

for internal verification of running-times. In: Kiselyov, O., King, A. (eds.) Func-
tional and Logic Programming (FLOPS 2016). LNCS, vol. 9613, pp. 144–162.
Springer (2016)

19. Nipkow, T.: Order-sorted polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.)
Logical Environments. pp. 164–188 (1993)

20. Nipkow, T.: Amortized complexity verified. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 310–324. Springer (2015)

21. Nipkow, T.: Automatic functional correctness proofs for functional search trees. In:
Blanchette, J., Merz, S. (eds.) Interactive Theorem Proving (ITP 2016). LNCS, vol.
9807, pp. 307–322. Springer (2016)

22. Nipkow, T.: Root-balanced tree. Archive of Formal Proofs (2017), http://

isa-afp.org/entries/Root_Balanced_Tree.html, Formal proof development
23. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014),

http://concrete-semantics.org

24. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

25. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

26. Overmars, M.: The Design of Dynamic Data Structures, LNCS, vol. 156. Springer
(1983)

27. Overmars, M., van Leeuwen, J.: Dynamic multi-dimensional data structures based
on quad- and k-d trees. Acta Informatica 17, 267–285 (1982)

28. Sands, D.: Complexity analysis for a lazy higher-order language. In: Jones, N.
(ed.) European Symposium on Programming (ESOP). LNCS, vol. 432, pp. 361–
376. Springer (1990)

29. Stout, Q.F., Warren, B.L.: Tree rebalancing in optimal time and space. Commun.
ACM 29(9), 902–908 (1986)

30. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymor-
phic and higher-order functional programs. In: Trinder, P., Michaelson, G., Pena,
R. (eds.) Implementation of Functional Languages, IFL 2003. LNCS, vol. 3145, pp.
86–101. Springer (2004)

31. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)
32. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.,

Felty, A. (eds.) Theorem Proving in Higher Order Logics. LNCS, vol. 1275, pp.
307–322. Springer (1997)

18

http://www.polyml.org/
http://isa-afp.org/entries/Root_Balanced_Tree.html
http://isa-afp.org/entries/Root_Balanced_Tree.html
http://concrete-semantics.org

	Verified Root-Balanced Trees

