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1 Introduction

In 1950, Kenneth Arrow proved his famous impossibility theorem [1,2] about voting sys-
tems: under certain minimal plausible fairness conditions, the only possible voting system
is a dictatorship. In 1973, Gibbard [6] and Satterthwaite [11] proved a similar result where
non-manipulability forces a dictatorship. These two theorems are closely related staples of
social choice theory [13], and numerous proofs for them have been given in the literature.
Yet logicians, as usual, have found fault with (some of) these proofs. Routley [10] writes:

The standard and textbook proofs of Arrow’s general impossibility theorem are, like
the original proofs, invalid.

This was written 30 years ago but has not attracted much attention. According to Google
Scholar, Routley’s paper is cited 3 times (once in German and twice in Serbian); in contrast,
Arrow’s book [2], which Routley refers to, has been cited more than 5000 times.

In this paper I formalize some recently published proofs of Arrow’s theorem [4,5,8] in
HOL and find that in places they still suffer from opaqueness and missing cases. Although
this makes it sound like a fault finding expedition, it should really be seen as an experiment
in formalization in an area that had been terra incognita for theorem provers when I started
this work.

The bulk of this work is divided into three parts. Section 4 describes a formalized proof
of Arrow’s theorem based on the first proof by Geanakoplos [4]. I had formalized this proof
in the summer of 2002 but never published it, partly because I had not been able to formalize
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the third proof by Geanakoplos [4], as I had originally intended. The reasons for this will be
explained in section 5, where I present a formalization of Geanakoplos’ third proof based on
a revised version of his proof published only in 2005 [5]. Missing cases in various versions
of this proof are analyzed. Finally, in section 6, I present a formalized proof of the Gibbard-
Satterthwaite theorem from Arrow’s theorem.

All proofs are formalized in the logic HOL of the theorem prover Isabelle [7]. The
reader should be warned that we present those proofs in great detail, although at least in
English. Thus this paper is not meant to replace the original informal proofs — those are
still preferable for a compact description of the key ideas. But since I take exception to
missing details and incomplete case distinctions in those proofs, I had better present the full
details myself, for future reference for others, although no doubt the manual transcription
from the Isabelle sources has introduced new errors. For the complete Isabelle proof see the
Archive of Formal Proofs at afp.sf.net.

2 Arrow’s Impossibility Theorem

We start by giving an informal exposition of the statement of Arrow’s impossibility theorem.
Social choice theory is about how preferences by individuals are combined into an overall
social preference, for example in voting systems. A preference is a complete ranking of
some fixed set of alternatives, with ties allowed. A profile is a mapping from individuals
to preferences; if individuals are numbered from 1 to N, profiles are often viewed as lists
or tuples. A social welfare function maps profiles to social preferences. Note that “voting”
is not anonymous: the social welfare function “knows” who has which preference because
profiles are not merely (multi)sets of preferences. A social welfare function satisfies

unanimity if, whenever everybody puts a below b in their ranking, the social ranking of a is
also below b;

independence of irrelevant alternatives (IIA) if the social ranking of two alternatives a and b
depends only on their relative ranking by every individual. That is, given two profiles
such that each individual ranks a relative to b the same way in both profiles, the social
preferences induced by both profiles must also rank a relative to b the same way.

IIA is best explained in pictures. Consider the following two profiles, where the columns are
the preferences of the three individuals:

a b c
b a a
c c b

c b a
a c b
b a c

Comparing the profiles column-wise we find that the ranking of a relative to b is the same.
Hence IIA would require that the relative social ranking of a relative to b must also be the
same. That is, if one profile induces a < b (or b < a), so must the other.

Theorem 1 (Arrow) Let the set of individuals and alternatives be finite and let there be at
least 3 alternatives. Then any social welfare function that satisfies unanimity and indepen-
dence of irrelevant alternatives is a dictatorship.

A dictatorship is a function that always selects the preference of one fixed individual, the
dictator.
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The reader should beware that the literature abounds with different versions of Arrow’s
theorem. As Taylor [13] puts it:

Everybody has his or her own take on Arrow’s impossibility theorem.

I follow the formulation by Geanakoplos, except for some of the terminology.

3 Basic Notation

HOL conforms largely to everyday mathematical notation, with a few modifications and
additions. The notation t::τ means that term t has type τ . The space of total functions is
denoted by⇒. Functions come with an update operation: f (x := y) is function f redefined
at point x to return result y. Symbol ≡ stands for definitional equality.

Occasionally −→ is displayed as If-then.

4 Geanakoplos’ First Proof

4.1 Alternatives, Individuals, Preferences and Profiles

Geanakoplos starts from a finite set of at least three alternatives. We formalize this as a type
alt with the axioms of finiteness and

∃a b c::alt. distinct [a, b, c]

where distinct [a, b, c] is merely a shorthand for a 6= b ∧ a 6= c ∧ b 6= c. As is customary
in social choice theory, Geanakoplos simply numbers the individuals from 1 through N. To
avoid the implicit ordering we turn this into a type indi and assume its finiteness.

A preference is a “ranking of the alternatives from top to bottom, with ties allowed” [5].
Mathematically speaking this is a total preorder. Our formalization of a preference in this
first proof is a utility function, that is, a function from alternatives to real numbers. Clearly,
every utility function induces a total preorder. Conversely, it is easy to see that every finite
total preorder can be modelled as some utility function. In fact, the converse works as long
as the underlying set is not larger than the reals. We define two type abbreviations:

pref = alt⇒ real prof = indi⇒ pref.

Our choice of modelling preferences as utility functions was mainly based on the ease
with which a number of operations on preferences can be expressed (see below), and because
reasoning about preferences often reduces to linear arithmetic, which is handled automati-
cally by Isabelle. In our second proof (see section 5) we employed the standard set-theoretic
model of linear orders instead and did not find that this caused significant complications in
definitions or proofs.

We write a, b, c, d, e for alternatives, i, j for individuals, p for preferences and P, Q for
profiles.

In order to hide the representation of preferences we introduce auxiliary functions for
the key operations on preferences required in the proofs. To express that b is at the top,
bottom or either position of p we define

p <· b ≡ ∀a. a 6= b −→ p a < p b
b ·< p ≡ ∀a. a 6= b −→ p b < p a
extreme p b ≡ b ·< p ∨ p <· b
Extreme P b ≡ ∀ i. extreme (P i) b
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To move b into top or bottom position or between two other positions we define

mktop p b ≡ p(b := Max (range p) + 1)
mkbot p b ≡ p(b := Min (range p) − 1)
between p a b c ≡ p(b := (p a + p c) / 2)

Note that this works only because range p is finite because the set of alternatives is finite.
Otherwise the maximum or minimum need not exist.

4.2 The Proof

The two assumptions of Arrow’s theorem, unanimity (U) and irrelevance of independent
alternatives (IIA), are global assumptions during the proof. That is, we work in the context
of a fixed social welfare function F :: prof ⇒ pref subject to these assumptions:

(U) If ∀ i. P i a < P i b then F P a < F P b.
(IIA) If ∀ i. P i a < P i b←→ P ′ i a < P ′ i b then F P a < F P b←→ F P ′ a < F P ′ b.

This is the direct formalization of the informal versions of unanimity and IIA in section 2.
The formal version of IIA is strikingly more concise than its informal counterpart.

The overall goal is to show that there is a dictator for F. The Isabelle proof follows
Geanakoplos closely. First we need the Extremal Lemma: If b is extreme in every individ-
ual’s preference, it must be extreme in the social preference.

Lemma 1 (Extremal Lemma) If Extreme P b then extreme (F P) b.

Proof by contradiction. If not extreme (F P) b then there must be a and c such that F P a ≥
F P b and F P b ≥ F P c and distinct [a, b, c] (which requires a sub-proof, see below). We
create P ′ from P by moving c above a as follows

P ′ i = (if P i <· b then between (P i) a c b else (P i)(c := P i a + 1))

taking care not to change the relative ranking of a and c w.r.t. b. By IIA we still have F P ′ a
≥ F P ′ b and F P ′ b ≥ F P ′ c. But by unanimity we have F P ′ a < F P ′ c, a contradiction.

The sub-proof mentioned above assumes ¬ extreme p b (where p = F P), which implies
the existence of a and c distinct from b such that p a ≥ p b and p b ≥ p c. In case a 6= c, we
are done. If a = c (and thus p a = p b = p c) we pick some d distinct from a and b and make
a case distinction: if p b < p d then p d ≥ p b ∧ p b ≥ p c, and if p b ≥ p d then p c ≥ p b ∧
p b ≥ p d. ut

The rest of the proof relies on the notion of an (extremely) pivotal individual i

pivotal i b ≡
∃P. Extreme P b ∧ b ·< P i ∧ b ·< F P ∧ F (P(i := mktop (P i) b)) <· b

who can move b from the bottom to the top of the social preference by moving b from the
bottom to the top of his preference, for some profile where b is always at the top or bottom.

First we show that for any b such a pivotal individual exists. The construction is induc-
tive: Start with a profile where all individuals place b at the bottom, and thus, by unanimity,
b is also at the bottom of the social preference; let the individuals one by one flip b from the
bottom to the top of their preference. By the extremal lemma, b must be at the top or bottom
of the social preference throughout this process. In the final profile everybody puts b at the
top, and thus, by unanimity, b is also at the top of the social preference. Hence there must
be some individual who caused b to flip from the bottom to the top of the social preference.
Formally we prove the following proposition by induction:
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Lemma 2 If Extreme P b and b ·< F P then ∃ i. pivotal i b.

Proof Since our individuals are not numbers, we induct on the size of D = {i | b ·< P i},
the set of individuals who (still) have b at the bottom of their preference. If D is empty, the
premises are contradictory: from D = /0 we have that b must be at the top of every preference
in P (because Extreme P b) and hence, by unanimity, that F P <· b. If D = D ′ ∪ {i} and i
/∈ D ′, let P ′= P(i := mktop (P i) b). If F P ′<· b then i is the pivotal individual. Otherwise,
by induction hypothesis, there is a pivotal individual for D ′ = {i | b ·< P ′ i} (because, by
the extremal lemma, ¬ F P ′<· b means b ·< F P ′ ). ut

By instantiating P in Lemma 2 with a profile where everybody puts b at the bottom (for
example by assigning it utility 0 and assigning utility 1 to all other alternatives), unanimity
forces b ·< F P, and we obtain the existence of a pivotal individual:

∃ i. pivotal i b

Now we show in stages that a pivotal individual is a dictator. Geanakoplos introduces
(implicitly) the following degrees of dictatorship:

i dictates a < b ≡ ∀P. P i a < P i b −→ F P a < F P b
i dictates-except c ≡ ∀a b. c /∈ {a, b} −→ i dictates a < b
dictator i ≡ ∀a b. i dictates a < b

where i dictates a < b is a ternary predicate in mixfix notation and i dictates-except c a
binary predicate in infix notation.

First we show that a pivotal individual for b dictates every pair not involving b:

If pivotal i b then i dictates-except b.

By definition we must show F Q a < F Q c assuming Q i a < Q i c for an arbitrary Q and
arbitrary a, c distinct from b. From pivotal i b we obtain a profile P such that Extreme P
b and b ·< F P and F P ′ <· b where P ′ = P(i := mktop (P i) b). We turn Q into a Q ′ by
moving b to the top or bottom like in P, for all j 6= i, and moving b between a and c for i:

Q ′ j =
(if j = i then between (Q j) a b c
else if P j <· b then mktop (Q j) b else mkbot (Q j) b)

Because a and c are not moved, IIA implies F Q a < F Q c←→ F Q ′ a < F Q ′ c. Hence our
goal has become F Q ′ a < F Q ′ c, which we show in two steps: F Q ′ a < F Q ′ b and F Q ′ b
< F Q ′ c. Step F Q ′ a < F Q ′ b follows by IIA from F P ′ a < F P ′ b because ∀ j. P ′ j a <
P ′ j b←→ Q ′ j a < Q ′ j b because Extreme P b. Step F Q ′ b < F Q ′ c also follows by IIA:
we have F P b < F P c because b ·< F P and ∀ j. P j b < P j c←→ Q ′ j b < Q ′ j c because
Extreme P b and b ·< P i.

Second, we show that a pivotal individual i for b (pivotal i b) is a dictator, thus conclud-
ing the proof of

∃ i. dictator i

We already know i dictates-except b. Hence it remains to show i dictates a ≶ b (which
abbreviates i dictates a<b ∧ i dictates b<a) for any a 6= b. Let c be distinct from a and b.
Hence there is a pivotal individual j for c (pivotal j c) which therefore dictates every pair not
involving c (j dictates-except c). Hence j dictates a ≶ b. Thus it remains to show i = j, which
we prove by contradiction, assuming i 6= j. Now we recall that pivotal i b yields a profile P
such that Extreme P b and b ·< F P and F P ′ <· b where P ′ = P(i := mktop (P i) b). We
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cannot have P j a < P j b because this would imply F P a < F P b (using j dictates a ≶ b),
which contradicts b ·< F P. This in turn implies P j b < P j a because of Extreme P b and
a 6= b. By definition of P ′ and because i 6= j this implies P ′ j b < P ′ j a, which contradicts
F P ′<· b. This finishes the proof.

4.3 Comparison

Although the proof by Geanakoplos and the above translation into Isabelle are morally the
same proof there are a number of differences:

– The Isabelle proof is 350 lines, about 6 pages, whereas Geanakoplos’ proof is about
about 1.5 pages, in both cases including definitions and statements.

– In Isabelle, the main proof is preceded by a prelude of auxiliary lemmas of about 100
lines not considered here.

– Geanakoplos implicitly turns a procedure for finding a pivotal individual into a function;
we have expressed this as an existential quantifier.

Although we did not find any errors in Geanakoplos’ proof, two statements required a
more detailed proof. The first one is also commented on by Wiedijk [15]. In the proof of the
extremal lemma we write above:

If not extreme (F P) b then there must be a and c such that F P a ≥ F P b and F P b
≥ F P c and distinct [a, b, c].

This paraphrases Geanakoplos but it requires an auxiliary proof of about 20 lines.
The second argument that needs a bit of elaboration is the proof that the pivotal individ-

ual i for b equals the dictator j for a ≶ b. Here the argument is fairly straightforward and
hinted at in Geanakoplos’ text.

5 Geanakoplos’ Third Proof

This proof has a similar flavour as the first one but proceeds via an intuitive lemma whose
proof turns out to be more involved than Geanakoplos’ text leads one to expect. For added
interest we also vary the model (relations instead of utility functions) to study the impact on
the formalization.

5.1 Alternatives, Individuals, Preferences and Profiles

We again formalize the set of alternatives as a type alt and assume

∃a b c::alt. distinct [a, b, c]

However, we drop the finiteness assumption, which turns out to be unnecessary, something
also noticed by Routley [10]. Geanakoplos does not state this and many other accounts of
Arrow’s theorem make the same finiteness assumption [9,8].

Individuals are again formalized by a finite type indi whose cardinality we abbreviate
by N. Generalizations to infinite sets of individuals exist but require more work [13].

Preferences are now formalized as sets of pairs:

pref = (alt × alt) set
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The set of strict linear preferences, i.e. transitive, irreflexive and total relations, is called Lin.
Variable L is by default a preference. In contrast to Geanakoplos we focus on strict linear or-
ders in this proof, primarily because later we will derive the Gibbard-Satterthwaite theorem
from Arrow’s theorem following a proof that is based on strict linear orders. Remember that
utility functions had the pleasant property that they encoded exactly the desired preorders,
whereas now we are forced to reason explicitly with typing properties like L ∈ Lin to ex-
press that L is a strict linear order. This overhead complicates lemmas and proofs somewhat.
What typically happens during proof construction is that some step fails to go through until
one realizes that a typing assumption is missing. Once that is included, predicate calculus
automation will usually do the rest.

For readability we introduce the abbreviation a <L b ≡ (a,b) ∈ L.
The following functions manipulate preferences by moving alternatives around: mktop

and mkbot resemble their namesakes in the previous section, rem is auxiliary.

mktop L b ≡ {(x, y) | x <L y ∧ x 6= b ∧ y 6= b} ∪ {(x, b) | x 6= b}
mkbot L b ≡ {(x, y) | x <L y ∧ x 6= b ∧ y 6= b} ∪ {(b, y) | y 6= b}
rem L a ≡ {(x, y) | x <L y ∧ x 6= a ∧ y 6= a}

Function below moves a immediately below b:

below L a b ≡
{(x, y) | x <L y ∧ x 6= a ∧ y 6= a} ∪ {(a, b)} ∪ {(x, a) | x <L b ∧ x 6= a} ∪
{(a, y) | b <L y ∧ y 6= a}

Function above moves b immediately above a:

above L a b ≡
{(x, y) | x <L y ∧ x 6= b ∧ y 6= b} ∪ {(a, b)} ∪ {(x, b) | x <L a ∧ x 6= b} ∪
{(b, y) | a <L y ∧ y 6= b}

Profiles and social welfare functions need to be defined as sets as well:

Prof ≡ I → Lin
SWF ≡ Prof → Lin

where I is defined as the set of all individuals and → is the predefined set-level function
space constructor: A→ B ≡ {f | ∀a∈A. f a ∈ B}.

The notion of a dictator w.r.t. a social welfare function is defined in the obvious manner:

dictator F i ≡ ∀P∈Prof . F P = P i

5.2 The Proof

Given a social welfare function F subject to unanimity and IIA

(U) ∀P∈Prof . ∀a b. (∀ i. a <P i b) −→ a <F P b

(IIA) ∀P,P ′∈Prof .∀a b. (∀ i. a <P i b←→ a <P ′ i b) −→ (a <F P b←→ a <F P ′ b)

we need to show that there is a dictator w.r.t. F. The key lemma is Pairwise Neutrality:

Lemma 3 (Pairwise Neutrality) If a 6= b and a ′ 6= b ′ and P ∈ Prof and P ′∈ Prof and
∀ i. a <P i b←→ a ′<P ′ i b ′ then a <F P b←→ a ′<F P ′ b

′.
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Proof I could not prove this lemma outright but needed case distinctions on a = b ′ and b =
a ′. This results in a sequence of similar but more specialized propositions. To emphasize the
similarity, we abbreviate the premises of the pairwise neutrality lemma by H. The first case
is a 6= b ′ and b 6= a ′, first in one direction only:

(1) If a 6= b ′ and b 6= a ′ and H and a <F P b then a ′<F P ′ b
′.

For the proof we define a new profile Q from P by moving, for each individual, a ′ just below
a (if a 6= a ′) and b ′ just above b (if b 6= b ′):

Q i =
(let L = if a = a ′ then P i else below (P i) a ′ a in if b = b ′ then L else above L b b ′)

This does not change the ranking of a relative to b and hence a <F Q b by IIA. Unanimity
implies a ′<F Q a if a 6= a ′ and b <F Q b ′ if b 6= b ′ (by definition of Q). Therefore a ′≤F Q a
and b ≤F Q b ′. Transitivity implies a ′<F Q b ′. By definition of Q we have ∀ i. a <P i b←→
a ′<Q i b ′ because a 6= b, a ′ 6= b ′, a 6= b ′ and a ′ 6= b. From assumption ∀ i. a <P i b←→ a ′

<P ′ i b ′we conclude ∀ i. a ′<Q i b ′←→ a ′<P ′ i b ′. Because of a ′<F Q b ′, IIA implies the
desired a ′<F P ′ b

′.
From (1) it trivially follows by symmetry that

(2) If a 6= b ′ and b 6= a ′ and H then a <F P b←→ a ′<F P ′ b
′.

Next we consider the case where a = b ′ and b = a ′:

(3) If a 6= b and P ∈ Prof and P ′∈ Prof and ∀ i. a <P i b←→ b <P ′ i a then a <F P b
←→ b <F P ′ a.

For the proof we pick some distinct third alternative c. Taking P, move c directly below b,
obtaining Q. Thus ∀ i. a <P i b←→ a <Q i c and hence a <F P b←→ a <F Q c. Taking Q,
move b directly below a, obtaining R. Taking R, move a directly below c, obtaining S. Just
like above, it follows that a <F Q c←→ b <F R c and b <F R c←→ b <F S a. Comparing
S with the original P we find ∀ i. b <S i a←→ a <P i b and hence by assumption we have
∀ i. b <S i a←→ b <P ′ i a and thus by IIA b <F S a←→ b <F P ′ a. Altogether this yields
the desired a <F P b←→ b <F P ′ a.

Now consider the case where |{a,b,a ′,b ′}| = 3:

(4) If distinct [a, b, c] and P ∈ Prof and P ′∈ Prof and ∀ i. a <P i b←→ b <P ′ i c then
a <F P b←→ b <F P ′ c.

For the proof define Q as the pointwise converse of P: Q i = (P i)−1. The assumptions imply
b <F Q a←→ b <F P ′ c by (2). Lemma (3) yields a <F P b←→ b <F Q a and transitivity
of←→ yields the desired a <F P b←→ b <F P ′ c.

From (1–4) we can prove Pairwise Neutrality by an exhaustive case distinction: If a 6= b ′

and b 6= a ′, use (2), if a = b ′ and b 6= a ′ or if a 6= b ′ and b = a ′, use (4), and if a = b ′ and
b = a ′, use (3). ut

Now we begin the actual proof of Arrow’s theorem. In the Isabelle proof we start by
obtaining a bijection h between type indi and the set {0..N−1} of natural numbers below
N. In this presentation, however, we omit h and identify individuals with elements of the
set {0..N−1}. We fix two distinct alternatives a and b and some L ∈ Lin such that a <L
b. The existence of some such L appears nontrivial if alt is arbitrarily large, a complication
Geanakoplos does not have to face because he assumes alt is finite. In the end I used the well-
ordering theorem for HOL (which may be overkill): there is a well-order of type (α × α)set
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for any type α . Hence there is in particular a strict linear order, from which one obtains L by
moving a directly below b. Similarly we obtain some L ′ ∈ Lin such that b <L ′ a. Now we
define a sequence of profiles Φ n = (λ i. if i < n then L else L ′), n≤N. That is, in Φ 0 every
individual has preference L ′, and then they change to L one by one, until all of them have
preference L in Φ N. By unanimity we have ¬ a <F (Φ 0) b but a <F (Φ N) b. Hence there
must exist some n < N such that ∀m≤n. b <F (Φ m) a but a <F (Φ (n + 1)) b. Now we will
see that this n did not just force the flip but is actually the dictator.

It is easy to see that dictatorship of some n can be shown as follows: Let P be a profile;
let c and d be two distinct alternatives such that c <P n d; show c <F P d. For this proof let e
be a third alternative distinct from c and d. Modify P i as follows: move e to the top if i < n,
move e directly above c if i = n, and move e to the bottom if i > n. Call the result Q. Since we
have not moved c or d we have ∀ i. c <P i d←→ c <Q i d and hence c <F P d←→ c <F Q
d by IIA. Thus it now suffices to show c <F Q d. By definition we have ∀ i. c <Q i e←→ a
<Φ (n + 1) i b and hence c <F Q e←→ a <F (Φ (n + 1)) b by Pairwise Neutrality. Because
a <F (Φ (n + 1)) b by construction, we have c <F Q e. Similarly we have ∀ i. e <Q i d←→
b <Φ n i a by definition, and hence e <F Q d ←→ b <F (Φ n) a by Pairwise Neutrality.
Because b <F (Φ n) a by construction, we have e <F Q d. By transitivity the desired c <F Q
d follows. This concludes the proof that n is the dictator.

5.3 Comparison

It turns out that both Isabelle proofs have roughly the same size: 350 lines for the first, 300
lines for the third proof. This is what the size of the journal proofs would lead us to expect:
both take roughly 1 page. More interesting is the comparison with the proofs in the literature.

5.3.1 Geanakoplos 2001

My first attempt, in 2002, to prove Arrow’s theorem in Isabelle was based on Geanakoplos’
technical report [4]. Initially I had been drawn to his third proof, which seemed the briefest,
but was something of a riddle. Hence I eventually turned towards his first proof. The result
was shown in the previous section. The third proof [4] suffered from two problems I emailed
to Geanakoplos in July 2002:

– The pairwise neutrality lemma talks about two profiles, but the text leaves this implicit,
which is confusing.

– The case distinction in the proof of the pairwise neutrality lemma is incomplete. It does
not cover the cases a = b ′ or b = a ′ (which give rise to (3) and (4) above).

5.3.2 Geanakoplos 2005

In the published version [5], the pairwise neutrality lemma has been revised. It talks about
the two profiles explicitly. And the proof distinguishes two cases. The second case is clear
enough: a = b ′∧ b = a ′, and proposition (3) above corresponds to it. The first case is:

Take c /∈ {a, b} and suppose first that (a ′, b ′) = (a, c) or (a ′, b ′) = (c, b) or (a ′, b ′)
= (c, d) with d /∈ {a, b, c}.

After a lot of head-scratching and with the help of Isabelle I decided that this is just a
complicated way of saying a 6= b ′∧ b 6= a ′, under the assumptions a 6= b, a ′ 6= b ′ and (a, b)
6= (a ′, b ′) (the trivial case). Thus the second case in the case distinction should have been a
= b ′∨ b = a ′ rather than a = b ′∧ b = a ′. Put differently, proposition (4) above is missing.
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5.3.3 Nisan 2007

Nisan follows Geanakoplos’ third proof [5]. His proof of the pairwise neutrality lemma is
particularly brief. It starts off by asserting that

By renaming we can assume without loss of generality that a ′ 6= b.

As it was unclear to me how this could cover the case (a, b) = (b ′, a ′), I asked Nisan by
email and received the reply that

(a, b) = (b ′, a ′) cannot happen since the assumption is that a <P i b←→ a ′<P i b ′.

Unfortunately the correct assumption is a <P i b←→ a ′<P ′ i b ′, which is not inconsistent
with (a, b) = (b ′, a ′). Moreover, the rest of his proof fails in case b ′= a. Another case of
missing cases.

6 The Gibbard-Satterthwaite Theorem

The Gibbard-Satterthwaite theorem [6,11] is another staple of social choice theory. It con-
cerns manipulability of social choice functions, for example voting systems. In a nutshell,
the only non-manipulable social choice function is a dictatorship. Traditionally, the Gibbard-
Satterthwaite theorem is proved as a corollary to Arrow’s theorem, and this is also the path
that we will follow. At the same time it should be mentioned that both theorems are often
regarded as “equivalent”. Taylor [13] writes:

We say that two theorems are equivalent if each is “easily derivable” from the other,
where the ease of the derivation is measured (intuitively) relative to the difficulty of
the stand-alone proofs of the theorems whose equivalence is being asserted.

If difficulty is measured in terms of the length of a computer-checked proof, it is not clear
whether the two theorems are equivalent in the above sense: my derivation of Gibbard-
Satterthwaite from Arrow is only 20% shorter than my direct proofs of Arrow. And although
I have not proved Gibbard-Satterthwaite directly as well, it is quite likely that such a proof
would be roughly as long as my proofs of Arrow: adapting ideas of Geanakoplos’ first
proof, Reny [9] presents two proofs of the two theorems side by side which are “essentially
identical”.

As with Arrow’s theorem, formulations of the Gibbard-Satterthwaite theorem differ;
we roughly follow Nisan [8]. He phrases it in terms of social choice functions, i.e. functions
from profiles to single alternatives. Such a choice function is manipulable if there is a profile
where some individual can enforce an alternative more to his liking by modifying his pref-
erences, i.e. by misrepresenting his preferences. That is, assume there is a situation/profile
where some individual i ranks a below b and the social choice is a. If i can, by modifying
his original and true preferences somehow, cause the social choice to become b, the social
choice function is manipulable.

Theorem 2 (Gibbard-Satterthwaite) Any non-manipulable social choice function onto a
set of at least three alternatives is a dictatorship.

We prove this theorem in the context of the same setup of individuals, alternatives and
profiles as in Geanakoplos’ third proof in the previous section. The letter f will denote a
social choice function (of type (indi⇒ pref )⇒ alt).

The precise definitions of ontoness and manipulability are as follows:
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onto f ≡ ∀a. ∃P∈Prof . a = f P
manipulable f ≡ ∃P∈Prof . ∃ i. ∃L∈Lin. f P <P i f (P(i := L))

We immediately prove the following characterization of non-manipulability:

Lemma 4 (Non-manipulability)

¬ manipulable f ←→
(∀P∈Prof .
∀ i. ∀L∈Lin. f P 6= f (P(i := L)) −→ f (P(i := L)) <P i f P ∧ f P <L f (P(i := L)))

Proof In the −→ direction we assume ¬ manipulable f and show that if P ∈ Prof, L ∈ Lin
and f P 6= f (P(i := L)), then

f (P(i := L)) <P i f P follows from ¬ manipulable f by strict linearity and
f P <L f (P(i := L)) also follows from ¬ manipulable f, where P is P(i := L) and L is P i,

by strict linearity because P(i := L, i := P i) = P.

In the ←− direction we assume the right-hand side (RHS) of the equivalence and show
¬ manipulable f indirectly. Assume manipulable f, that is, P ∈ Prof, L ∈ Lin and f P <P i
f (P(i := L)). Because f P <P i f (P(i := L)) implies f P 6= f (P(i := L)), (RHS) implies
f (P(i := L)) <P i f P, which contradicts f P <P i f (P(i := L)). ut

6.1 The Proof

The following proof of the Gibbard-Satterthwaite theorem takes place in the context of a
social choice function f that is non-manipulable and onto. We need to show that it is a
dictatorship, which is defined for social choice functions as follows:

dict f i ≡ ∀P∈Prof . ∀a. a 6= f P −→ a <P i f P

The winner must be at the top of the dictator’s ranking.
As a first lemma we prove monotonicity from non-manipulability: if nobody downgrades

the winner, he stays the winner.

Lemma 5 (Monotonicity) If P ∈ Prof and P ′∈ Prof and ∀ i a. a <P i f P −→ a <P ′ i f P
then f P ′= f P.

Proof As in the proof of Arrow’s theorem we identify individuals with elements of the set
{0..N−1} for reasons of readability. We define a sequence of profiles Φ 0, . . . , Φ N such
that Φ 0 = P, Φ N = P ′, and Φ (n + 1) is Φ n where individual n has changed his mind
from P n to P ′ n. A direct definition is Φ n = (λ i. if i < n then P ′ i else P i). We show by
induction on n that n ≤ N −→ f (Φ n) = f P. Setting n = N yields the desired f P ′ = f P
because i < N for every individual. The base case n = 0 of the induction is trivial. In the
induction step let Q = (Φ n)(n := P ′ n). It follows that Q = Φ (n + 1). We prove f (Φ (n +
1)) = f P by contradiction. From f (Φ (n + 1)) 6= f P and Q = Φ (n + 1) and the induction
hypothesis f (Φ n) = f P we obtain f (Φ n) 6= f Q. By the non-manipulability lemma we
have f Q <Φ n n f (Φ n) and f (Φ n) <P ′ n f Q. Because Φ n n = P n and f (Φ n) = f P,
the assumption of the monotonicity lemma and f Q <Φ n n f (Φ n) yield f Q <P ′ n f (Φ n),
thus contradicting f (Φ n) <P ′ n f Q. ut

Now we come to the main construction in the proof. In order to apply Arrow’s theorem,
we turn our social choice function into a social welfare function. The idea is simple: in order
to determine if socially a < b, move a and b to the top of each individual’s preference and
check if that leads to b being chosen. First we define how to move a whole set of alternatives
to the top of an ordering without reordering them w.r.t. each other:
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Top S L ≡
{(a, b) | a <L b ∧ (a ∈ S ∧ b ∈ S ∨ a /∈ S ∧ b /∈ S)} ∪ {(a, b) | a /∈ S ∧ b ∈ S}

For example, if a <L b <L c <L d and L ′= Top {a, c} L then b <L ′ d <L ′ a <L ′ c.
Extending Top S from a single ordering to a profile P is easy: Top S ◦ P. This allows

a compact formalization of the above sketch of the translation of social choice to social
welfare functions:

swf f ≡ λP. {(a, b) | a 6= b ∧ f (Top {a, b} ◦ P) = b}
Note that swf is a function that is applied to a social welfare function f.

The following set-valued unanimity lemma can be formalized similarly concisely: if
everybody puts the elements of S at the top of their preference, f will choose a member of S:

Lemma 6 (Top-unanimity) If P ∈ Prof and S 6= /0 then f (Top S ◦ P) ∈ S.

Proof Since S 6= /0 there is some a ∈ S. Because f is onto, there is some profile Pa such that
f Pa = a. We define a sequence of profiles Φ 0, . . . , Φ N:

Φ n = (λ i. if i < n then Top S (P i) else Pa i)

That is, Φ 0 = Pa, Φ N = Top S ◦ P, and in between individuals change their mind one
by one. We show by induction on n that n ≤ N −→ f (Φ n) ∈ S. Setting n = N yields the
desired f (Top S ◦ P) ∈ S. The base case n = 0 is trivial because a ∈ S. In the induction
step we make a case distinction. If f (Φ n) = f (Φ (n + 1)), the claim holds by induction
hypothesis. If f (Φ n) 6= f (Φ (n + 1)), then the non-manipulability lemma yields f (Φ n)
<Top S (P n) f (Φ (n + 1)) (because Φ(n+1) = (Φ n)(n := Top S (P n))). Together with the
induction hypothesis f (Φ n) ∈ S this implies that also f (Φ (n + 1)) ∈ S. ut

Finally we can prove that swf f satisfies the premises of Arrow’s theorem. First we show
that swf f is actually a social welfare function. That is, given P ∈ Prof we must prove swf f P
∈ Lin. Totality, i.e. a <swf f P b ∨ b <swf f P a for arbitrary a,b, follows from Top-unanimity
because f (Top {a, b} ◦ P) ∈ {a, b}. Irreflexivity, i.e. ¬ a <swf f P a, is trivial by definition
of swf. For transitivity assume a <swf f P b and b <swf f P c, i.e. a 6= b, f (Top {a, b} ◦ P) =
b, b 6= c and f (Top {b, c} ◦ P) = c. We need to prove a <swf f P c, i.e. a 6= c and f (Top {a,
c} ◦ P) = c. Clearly a = c contradicts the assumptions. Now observe that f (Top {a, b, c}
◦ P) = a is contradictory because monotonicity implies f (Top {a, b} ◦ P) = a (because a
∈ {a,b} ⊆ {a,b,c}, the premise of monotonicity holds), which contradicts the assumptions.
Similarly one shows that f (Top {a, b, c} ◦ P) = b is contradictory. By Top-unanimity this
leaves only f (Top {a, b, c} ◦ P) = c. By monotonicity we obtain the desired f (Top {a, c} ◦
P) = c. This concludes the proof that swf f is what it claims to be, a social welfare function.

Next we have to show that swf f satisfies unanimity. Assume P ∈ Prof and ∀ i. a <P i b
(and thus a 6= b). Therefore Top {a,b} ◦ P = Top {b} ◦ Top {a,b} ◦ P and f (Top {b} ◦ Top
{a,b} ◦ P) = b by Top-unanimity. Hence f (Top {a,b} ◦ P) = b and thus a <swf f P b.

We also need to show that swf f satisfies IIA. Assume P,P ′∈ Prof and ∀ i. a <P i b←→
a <P ′ i b. Let Q = Top {a, b} ◦ P and Q ′= Top {a, b} ◦ P ′. Let us first prove

(∗) ∀ i c. c <Q i f Q −→ c <Q ′ i f Q.

By Top-unanimity we have f Q ∈ {a, b}. Thus, if c /∈ {a, b} then c <Q ′ i f Q. If c = a, then c
<Q i f Q implies f Q = b and a <P i b and thus (by assumption) a <P ′ i b and hence c <Q ′ i
f Q. Symmetrically for c = b. Thus (∗) holds and we can appeal to monotonicity to deduce
f Q = f Q ′. By definition of swf we obtain the desired a <swf f P b←→ a <swf f P ′ b.

Having proved that swf f satisfies the premises of Arrow’s theorem we obtain a dictator
for swf f. As a last step we prove that this individual is also a dictator for f :



13

If dictator (swf f ) i then dict f i.

We assume dictator (swf f ) i, P ∈ Prof and a 6= f P. By monotonicity this implies f (Top {a,
f P} ◦ P) = f P. Because i is a dictator for swf f we get P i = {(a, b) | a 6= b ∧ f (Top {a, b}
◦ P) = b}. The two facts together with a 6= f P imply the desired a <P i f P. Thus we have
finally proved the conclusion of the Gibbard-Satterthwaite theorem:

∃ i. dict f i

6.2 Comparison

The proof above differs from Nisan’s in a few points.

– What Nisan calls monotonicity and proves equivalent to non-manipulability I have called
non-manipulability in the first place. My notion of monotonicity agrees with that of
Reny [9] and others.

– Nisan (re)proves instances of the monotonicity lemma wherever I use the monotonicity
lemma.

– There are a few smaller omissions in Nisan’s proof: for example, the precondition S
6= /0 in Top-unanimity, and the requirement a 6= b in the definition of the social wel-
fare function from a social choice function (making Nisan’s social welfare function re-
turn reflexive orderings). The only larger omission is in the proof of the implication
dictator (swf f ) i −→ dict f i where he just writes “obvious”. However, it is not clear to
me how one can avoid the argument I made above, which requires monotonicity, and
hence in his setting another small inductive proof. Since he spells these inductions out
in all other cases, it is unclear why he did not do so in this instance, too.

7 Related work

Wiedijk [14,15] independently formalized Geanakoplos’ first proof with the help of the
Mizar system. Of course he also discovered the omission we discussed in section 4.3, and
fixed it the same way. His formalization takes about 1000 lines of Mizar text, roughly 3
times as much as the Isabelle version. This is unsurprising because of Isabelle’s higher level
of automation.

Peter Gammie independently formalized Arrow’s theorem and related results in Isabelle
in 2006. This work has recently been made available in the Archive of Formal Proofs [3].
He draws on Sen’s landmark work [12].

8 Conclusion

Social choice theory turns out to be perfectly suitable for mechanical theorem proving. The
concepts are directly representable in set theory and the traditional formulations leave some-
thing to be desired in thoroughness. There is a large body of knowledge that should be trans-
lated systematically instead of diving in to prove a few main results. However, it is unclear
if this will lead to new insights into either social choice theory or theorem proving.
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