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Abstract. This paper develops sound modelling and reasoning methods
for imperative programs with pointers: heaps are modelled as mappings
from addresses to values, and pointer structures are mapped to higher-
level data types for verification. The programming language is embedded
in higher-order logic, its Hoare logic is derived. The whole development
is purely definitional and thus sound. The viability of this approach is
demonstrated with a non-trivial case study. We show the correctness
of the Schorr-Waite graph marking algorithm and present part of the
readable proof in Isabelle/HOL.

1 Introduction

It is a truth universally acknowledged, that the verification of pointer programs
must be in want of machine support. The basic idea in all approaches to pointer
program proofs is the same and goes back to Burstall [4]: model the heap as
a collection of variables of type address — wvalue and reason about the pro-
grams in Hoare logic. A number of refinements of this idea have been proposed;
see [11] for a partial bibliography. The most radical idea is that of separation
logic [12]. Although very promising, it is difficult to combine with existing theo-
rem proving infrastructure because of its special logical connectives. Instead we
take Bornat’s [2] presentation of Burstall’s ideas as our point of departure.

Systematic approaches to automatic or interactive verification of pointer pro-
grams come in two flavours. There is a large body of work on program analysis
techniques for pointer programs. These are mainly designed for use in compilers
and can only deal with special properties like aliasing. In the long run these
approaches will play an important role in the verification of pointer programs.
But we ignore them for now because our goal is a general purpose logic. For the
same reason we do not discuss other special purpose logics, e.g. [6].

General theorem proving approaches to pointer programs are few. A land-
mark is the thesis by Suzuki [13] who developed an automatic verifier for pointer
programs that could handle the Schorr-Waite algorithm. However, that verifi-
cation is based on 5 recursively defined predicates (which are not shown to be
consistent — mind the recursive “definition” P = —=P!) and 50 unproved lemmas
about those predicates. Bornat [2] has verified a number of pointer programs with
the help of Jape [3]. However, his logical foundations are a bit shaky because he
works with potentially infinite or undefined lists but explicitly ignores defined-
ness issues. Furthermore, since Jape is only a proof editor with little automation,
the Schorr-Waite proof takes 152 pages [1].



The contributions of our paper are as follows:

— An embedding of a Hoare logic for pointer programs in a general purpose
theorem prover (Isabelle/HOL).

— A logically fully sound method for the verification of inductively defined data
types like lists and trees on the pointer level.

— A readable and machine checked proof of the Schorr-Waite algorithm.

The last point deserves special discussion as it is likely to be controversial. Our
ailm was to produce a proof that is close to a journal-style informal proof, but
written in a stylised proof language that can be machine-checked. Isabelle/Isar
[14,9], like Mizar, provides such a language. Publishing this proof should be
viewed as creating a reference point for further work in this area: although an
informal proof is currently shorter and more readable, our aim should be to
bridge this gap further. It also serves as a reference point for future mechanisa-
tions of other formal proofs like the separation logic one by Yang [15].

So what about a fully automatic proof of the Schorr-Waite algorithm? This
seems feasible: once the relevant inductive lemmas are provided, the preservation
of the invariant in the algorithm should be reducible to a first-order problem
(with some work, as we currently employ higher-order functions). If the proof is
within reach of current automatic first-order provers is another matter that we
intend to investigate in the future. But irrespective of that, a readable formal
proof is of independent interest because the algorithm is sufficiently complicated
that a mere “yes, it works” is not very satisfactory.

The rest of the paper is structured as follows. After a short overview of
Isabelle/HOL notation (§2) and an embedding of a simple imperative program-
ming language in Isabelle/HOL (§3), we describe how we have extended this
programming language with references (§4). We show in some detail how to
prove programs involving linked lists (§5) and discuss how this extends to other
inductive data types (§6). Finally we present our main case study, the structured
proof of the Schorr-Waite algorithm (§7).

2 Isabelle/HOL notation

Isabelle/HOL [10] is an interactive theorem prover for HOL, higher-order logic.
The whole paper is generated directly from the Isabelle input files, which include
the text as comments. That is, if you see a lemma or theorem, you can be sure its
proof has been checked by Isabelle. Most of the syntax of HOL will be familiar
to anybody with some background in functional programming and logic. We just
highlight some of the nonstandard notation.

The space of total functions is denoted by the infix =-. Other type construc-
tors, e.g. set, are written postfix, i.e. follow their argument as in ‘a set where 'a
is a type variable.

The syntax [P; Q] = R should be read as an inference rule with the two
premises P and  and the conclusion R. Logically it is just a shorthand for
P — (@) — R. Note that semicolon will also denote sequential composition
of programs, which should cause no major confusion. There are actually two



implications — and =. The two mean the same thing, except that — is
HOL’s “real” implication, whereas = comes from Isabelle’s meta-logic and
expresses inference rules. Thus = cannot appear inside a HOL formula. Beware
that — binds more tightly than =>: in V2. P — @ the Vz covers P — @,
whereas in Vz. P = @ it covers only P.

A HOL speciality is its e-operator: SOMFE x. P x is an arbitrary but fixed
x that satisfies P. If there is no such z, an arbitrary value is returned — note
that all HOL types are non-empty! HOL provides the notation f(a := v) for
updating function f at argument a with the new value v. Set comprehension is
written {z. P} rather than {z | P} and is also available for tuples, e.g. {(z, v,
z). P}. Lists in HOL are of type ‘a list and are built up from the empty list
[| via the infix constructor # for adding an element at the front. Two lists are
appended with the infix function @. Function set turns a list into a set, function
rev reverses a list.

3 A simple programming language

In the style of Gordon [5] we defined a little programming language and its
operational semantics. The basic constructs of the language are assignment,
sequential composition, conditional and while-loop. The rules of Hoare logic (for
partial correctness) are derived as theorems about the semantics and are phrased
in a weakest precondition style. To automate their application, a proof method
veg has been defined in ML. It turns a Hoare triple into an equivalent set of
HOL formulae (i.e. its verification conditions). This requires that all loops in
the program are annotated with invariants. More semantic details can be found
elsewhere [8]. Here is an example:
lemma multiply-by-add: VARS m s a b::nat

{a=A AN b=B}

m = 0; s := 0;

WHILE m # a INV {s=mxb A a=A A b=B} DO s := s+b; m := m+1 OD

{s = AxB}

The program performs multiplication by successive addition. The first line de-
clares the program variables m s a b to distinguish them from the auxiliary
variables A and B. In the precondition A and B are equated with a and b —
this enables us to refer to the initial value of a and b in the postcondition.

The application of wvcg leaves three subgoals: the validity of the invariant
after initialisation of m and s, preservation of the invariant, and validity of the
postcondition upon termination. All three are proved automatically using linear
arithmetic.

1./\msab.azA/\b:B:>0:0*b/\a:A/\b=B

2. Amsab.
(s=mxbANa=AANb=B)Am#a=
s+b=(m+1)xbANa=AANb=B

3. \Nmsab (s=mxbANa=AANb=B)A-m#a= s=AxB



4 References and the heap

This section describes how we model references and the heap. We distinguish
addresses from references: a reference is either null or an address. Formally:
datatype ‘a ref = Null | Ref 'a

We do not fix the type of addresses but leave it as a type variable ‘a throughout
the paper. Function addr :: ‘a ref = ’a unpacks Ref, i.e. addr (Ref a) = a.

A simpler model is to declare a type of references with a constant Null, thus
avoiding Ref and addr. We found that this leads to slightly shorter formulae but
slightly less automatic proofs, i.e. it makes very little difference.

Our model of the heap follows Bornat [2]: we have one heap f of type
address — wvalue for each field name f. Using function update notation, an
assignment of value v to field f of a record pointed to by reference r is written f
:= f((addr r) := v), and access of f is written f(addr r). Based on the syntax
of Pascal, we introduce some more convenient notation:

f(r —e) = f((addr r) :=e)
r'.fi=ce = f=f(r—e
r.f = fladdr r)

Note that the rules are ordered: the last one only applies if the previous one does
not apply, i.e. if it is a field access and not an assignment.

5 Lists on the heap

The general approach to verifying low level structures is abstraction, i.e. mapping
them to higher level concepts. Linked lists are represented by their ‘next’ field,
i.e. a heap of type

types ‘a next = ‘a = 'a ref

An abstraction of a linked list of type ‘a next is a HOL list of type ’a list.

5.1 Naive functional abstraction

The obvious abstraction function list has type ‘a next = ‘a ref = 'a list, where
the second parameter is the start reference, and is defined as follows:

list next Null = ||
list next (Ref a) = a # list next (next a)

However, this is not a legal definition in HOL because HOL is a logic of total
functions but function list is not total: next could contain a loop or an infinite
chain. We will now examine two alternative definitions.

5.2 Relational abstraction

Instead of functions we work with relations. Although we could define the desired
relation directly, it turns out to be useful to define a more general relation first:
Path next x as y means that as is a path of addresses that connects z to y by
means of the next field.



Path :: 'a next = 'a ref = 'a list = 'a ref = bool
Path next z [| y = (z = y)
Path next z (a#as) y = (z # y A z = Ref a A Path next (nect a) as y)

This is a valid definition by primitive recursion on the list of addresses. Note
that due to the condition = # y, this list corresponds to the unique minimal
length path, which is useful in proofs about circulat lists.

We now define lists as those paths that end in Null:

List :: 'a next = 'a ref = 'a list = bool
List next x as = Path next x as Null

It is trivial to derive the following recursive characterisation, which we could
have taken as the definition of List had we not started with Path:

lemma List next r [| = (r = Null)
lemma List next r (a#tas) = (r = Ref a A List next (next a) as)

By induction on as we can show
a ¢ set as = List (next(a := y)) z as = List next x as  (List-update-conv)

which, in the spirit of [2], is an important separation lemma: it says that up-
dating an address that is not part of some linked list does not change the list
abstraction. This allows to localise the effect of assignments.

An induction on as shows that List is in fact a function

[List next x as; List next © bs] = as = bs

and that a list is a path followed by a rest list:
List next z (as @ bs) = (Jy. Path next x as y A List next y bs)

Thus a linked list starting at next a cannot contain a:
lemma List next (next a) as => a ¢ set as

Otherwise as could be decomposed into bs @ a # cs and then the previous two
lemmas lead to a contradiction.
It follows by induction on as that all elements of a linked list are distinct:

List next © as = distinct as (List-distinct)

5.3 Examples: Linear and circular list reversal

After this collection of essential lemmas we turn to a real program proof: in place
list reversal. We first treat linear acyclic lists.

lemma VARS nextp qr
{List next p Ps A\ List next ¢ Qs A set Ps N set Qs = {}}
WHILE p # Null
INV {3 ps gs. List next p ps A List next q gs A set ps N set gs = {} A
rev ps @ gs = rev Ps @ Qs}



DO r :=p; p := p .next; r".next := q; q := r OD
{List next q (rev Ps @ Qs)}

The precondition states that Ps and (s are two disjoint lists starting at p and
q. Afterwards, the list starting at ¢ is rev Ps @ @Qs: Ps has been reversed onto
@s. The invariant is existentially quantified because we have no way of naming
the intermediate lists.

The argument for circular list reversal is similar:

lemma VARS next root p q tmp
{root = Ref r A Path next (root”".next) Ps root}
p = root; q := root”.next;
WHILE q # root
INV {3 ps gs. Path next p ps root A Path next q qs root A
root = Ref r A set ps N set gs = {} A Ps = (rev ps) Q gs }
DO tmp := q; q := q".next; tmp ".next := p; p:=tmp OD;
root”.next := p
{ root = Ref r N Path next (root”.next) (rev Ps) root}

5.4 Functional abstraction

The proof of linear list reversal is still automatic. Circular list reversal, and
other more complicated algorithms like the merging of two lists require manual
instantiation of the existential quantifiers. Although more powerful automatic
provers for predicate calculus would help, providing a few witnesses interactively
can be more economical than spending large amounts of time coaxing the system
into finding a proof automatically.

Trying to avoid existential quantifiers altogether, we turned to a third alter-
native for abstracting linked lists:
islist :: 'a next = 'a ref = bool
islist next p = Jas. List next p as
list :: 'a next = 'a ref = 'a list
list next p = SOME as. List next p as

As a direct consequence we obtain:
lemma List next p as = (islist next p A\ as = list next p)

The following lemmas are easily derived from their counterparts for List and the
relationship just proved:

lemma islist next Null

lemma islist next (Ref a) = islist next (next a)

lemma list next Null = []

lemma islist next (next a) = list next (Ref a) = a # list next (next a)
lemma islist next (next a) = a ¢ set(list next (next a))

lemma [islist next p; y ¢ set(list next p)] = islist (next(y := q)) p

lemma [islist next p; y ¢ set(list next p)] = list (next(y := q)) p = list next p

This suffices for an automatic proof of list reversal:



lemma VARS nextp qr
{islist next p A islist next ¢ A
Ps = list next p A Qs = list next q¢ N set Ps N set Qs = {}}
WHILE p # Null
INV {islist next p A islist next g A set(list next p) N set(list next q) = {} A
rev(list next p) @ (list next q) = rev Ps @ Qs}
DO r = p; p := p .next; r".next := q; q := r OD
{islist next g A list next ¢ = rev Ps @ Qs}

We have verified a few more algorithms, like searching a list and merging
two ordered lists, in the same manner. We found that proofs could eventually be
automated by proving further specialized rewrite rules for both islist and list. But
this was less direct and more time consuming than providing existential witnesses
for List. Thus we believe that relational abstraction, along with its associated
existential quantification, is often easier to use than functional abstraction.

5.5 Storage allocation

We conclude the section on lists by showing how we treat the allocation of new
storage. Allocated addresses are distinguished from unallocated ones by intro-
ducing a separate variable that records the set of allocated addresses. Selecting
a new address is easy:

new :: 'a set = a
newA = SOME a. a ¢ A

As long as the type of addresses is infinite and the set of currently allocated
addresses finite, a new address always exists.

The following example program creates a linked list on the heap whose elem
fields contain the elements of the input list zs (of type b list) in reverse order:

lemma — finite(UNIV ::'a set) =
VARS xs elem next alloc p (q::'a ref)
{Xs =xs A p = Null}
WHILE zs # ||
INV {islist next p A set(list next p) C set alloc A
map elem (rev(list next p)) @ zs = Xs}
DO q := Ref(new(set alloc)); alloc := (addr q)#alloc;
q".next := p; q".elem := hd xs; s := tl xs; p := q oD
{islist next p A map elem (rev(list next p)) = Xs}

We assume that the type of addresses is infinite — UNIV is the set of all elements
of a given type. Variable alloc contains the list (rather than the set) of allocated
addresses — lists have the advantage of always being finite. Allocating an address
simply means adding it to alloc. The input list xs is taken apart with hd (head)
and tl (tail). The proof is automatic.

6 Inductive data types on the heap

Every inductively defined data type has a canonical representation on the heap
and therefore a canonical relational abstraction. The basic idea is simple: define



the abstraction relation inductively, following the inductive definition of the data
type. Instead of showing the general case with lots of indices we go through an
example, trees. Given the following data type of binary trees:

datatype ‘a tree = Tip | Node ('a tree) 'a ('a tree)
the corresponding abstraction relation is defined as:

Tree :: 'a next = 'a next = 'a ref = 'a tree = bool

Tree I v Null Tip
[Tree lr (1 a) t1; Tree l v (r a) t2] = Tree I v (Ref a) (Node t1 a t2)

Of course one could also define Tree recursively:

Tree Il rp Tip = (p = Null)
Tree L v p (Node t1 a t2) = (p = Ref a A Tree lr (r a) t1 N Treelr (I a) t2)

As in §5.4 we could derive two functions istree and tree from Tree.

Note that Tree actually characterizes dags rather than trees. To avoid shar-
ing we need an additional condition in the Node-case: set-of t1 N set-of t2 =
{} where set-of returns the nodes in a tree. Loops cannot arise because the
definition of Tree is wellfounded.

7 The Schorr-Waite algorithm

The Schorr-Waite algorithm is a non-recursive graph marking algorithm. Most
graph marking algorithms (e.g. depth-first or breadth-first search) are recursive,
making their proof of correctness relatively simple. In general one can eliminate
recursion in favour of an explicit stack. In certain cases, the need for an explicit
stack can be relaxed by using the data structure at hand to store state informa-
tion. The Schorr-Waite algorithm does just that. The incentive for this is not
merely academic. Graph marking algorithms are normally used during the first
stage of garbage collection, when scarcity of memory prohibits the luxury of a
stack.

The problem with graph marking without recursion is backtracking: we have
to remember where we came from. The Schorr-Waite algorithm uses the fact that
if we always keep track of the current predecessor node once we have descended
into the next node in the graph, the pointer reference from the predecessor to
the next node is redundant, and can be put to better use by having it point to
the predecessor of this predecessor node, and so on till the root of the graph.
If done carefully, this reverse pointer chain preserves connectivity, facilitates
backtracking through the graph, and is analogous to a stack. Figure 1 illustrates
a complete marking cycle for a small subgraph. We have a pointer to the current
node or tip (t) and to its previously visited predecessor (p). The tip is marked
and the algorithm descends into its left child, updating the predecessor pointer,
and using the forward link of the tip to point to its predecessor. The tip has been
“pushed” onto the predecessor stack. After exploring the left child, a “swing” is
performed to do the same with the right. When all children of our original tip



Fig. 1. A marking cycle

have been explored, no more swings are possible, and the tip is “popped” out of
the predecessor stack, leaving us with the original subgraph with all reachable
nodes marked.

Every pointer that is traversed in the graph is reversed, making it non triv-
ial to see that we are indeed left with the graph we had started with, when
the algorithm has terminated. This difficulty is amplified when one tries to for-
mally prove its correctness. The Schorr-Waite algorithm is therefore considered
a benchmark for any pointer formalisation. Below is the version of the algorithm
we will prove correct in this paper, along with Hoare logic assertions which we
will discuss in the next section.

VARS cmlrtp qroot

{R = reachable (relS {l, r}) {root} A (Vz. - mz) ANiR=r AiL =1}
t := root; p := Null;

WHILE p # Null V t # Null A = t".m

INV {3 stack.

List (S clr) p stack A (i1 %)
(Vz € set stack. m x) A (*i2x)
R = reachable (relS{l, r}) {t,p} A (xi8%)
Vz.z € RA—-mz — (x4 *)
z € reachable (relS{l,r}|m) ({t}Uset(map r stack))) A
(Vz. mz — z € R) A (#35%)
(Vz. z ¢ set stack — rx =iRz ANlz =1L z) A (36 %)
(stkOk ¢ 1 r iL iR t stack) (#37%) }
DOIFt = NullV t".m
THEN IF p~.c
THEN q :=t;t :=p;p:=p_.r;t"r:=gq (*popx)
ELSE q:=t;t:=p .r;p-.r :=p .1; (xswingx)
p .= q; p .c := True FI
ELSE q :=p;p:=t;t:=t".0; p".l := g (xpushx)
p~.m = True; p~.c := False FI OD

{Vz. (z € R)=mz)AN(r=iRA1l=1L)}

We consider graphs where every node has at most two successors. The proof with
arbitrary out degree uses the same principles and is just a bit more tedious. For
every node in the graph, | and r are pointer fields that point to the successor
nodes, m is a boolean field that is true for all marked nodes, and will be the



result of running the algorithm. The boolean helper field ¢ keeps track of which
of the two child pointers has been reversed. Pointer ¢ points to the tip. It is
initially set to the root. Within the while loop, the algorithm divides into three
arms, corresponding to the operation being performed on the predecessor stack.
Pointer p points to the predecessor of ¢ and is also the top of the predecessor
stack.

7.1 Specification

The specification uses the following auxiliary definitions:

reachable r P = r* ““ addrS P (reachable-def)
addrS P = {a. Ref a € P} (addrS-def)
relS M = |JmeM. {(a, b). m a = Ref b} (relS-def)
rlm={(z,y). (z,y) €Er AN~ ma} (restr-def)

Reachability is defined as the image of a set of addresses under a relation (r “ S
is the image of set S under relation r). This relation is given by relS which casts
a set of mappings (i.e. field names) to a relation. r|m is the restriction of the
relation r w.r.t. the boolean mapping m.

We will now explain the Hoare logic assertions shown in §7. The precondition
requires all nodes to be unmarked. It “remembers” the initial value of I, r and
the set of nodes reachable from root in iL, iR and R respectively. As the postcon-
dition we want to prove that a node is marked iff it is in R, i.e. is reachable, and
that the graph structure is unchanged. To prove termination, we would need to
show that there exists a loop measure that decreases with each iteration. Bornat
[2] points out a possible loop measure. Since our Hoare logic implementation
does not deal with termination, we prove only partial correctness.

The loop invariant is a bit more involved. Every time we enter the loop, stack
is made up of the list of predecessor nodes starting at p, using the mapping
Sclr= Az if cxthen rz else | x, that returns [ or r depending on the value
of ¢ (i1). Everything on the stack is marked (i2). Everything initially reachable
from root is now reachable from ¢ and p (i8). If something is reachable and
unmarked, it is reachable using only unmarked nodes from ¢ or from the r fields
of nodes in the stack (we traverse [ before r) (i4). If a node is marked, it was
initially reachable (i5). All nodes not on the stack have their ! and r fields
unchanged (i6). stkOk says that for the nodes on the stack we can reconstruct
their original | and r fields (7). It is defined using primitive recursion:
stkOk ¢ I iL iR t [| = True
stkOk ¢ lriL iR t (p # stk) =
(stkOk ¢ L riL iR (Ref p) stk A

iLp = (if cpthenlp elset) N iR p = (if c p then t else r p))

7.2 Proof of correctness

In this section we will go through part of the Isabelle/Isar proof of correctness,
emphasising its readability. Although we provide additional comments, we rely
on the self-explanatory nature of the Isar proof language, details of which can



be found elsewhere [14,9]. The entire proof is available at [7]. At many places in
the proof a compromise was made between using automatic proof tactics when
the proof looked intuitive, and manually going into the proof state when it was
felt that more explanation was necessary. The entire proof is about four hundred
lines of text. As far as we know, it is the shortest and most human readable,
machine checkable proof of this algorithm. References to traditional proofs can
be found in [2].

For automatic proofs, Isabelle is equipped with a number of proof tactics
(e.g. blast for predicate calculus reasoning, simp for simplification, and auto for
combinations of the two). In the case of lengthy invocations of these tactics,
we will not show the tactic itself, but only important pre-proved lemmas used
to invoke it. For every construct defined, we prove its corresponding separation
lemmas, such as List-update-conv in §5.2. They are used as simplification rules
wherever applicable. Proofs of these separation lemmas normally follow from
short and simple inductive arguments. The complete proof document [7] contains
all such proven simplification rules.

We first state the correctness theorem as the Hoare triple in §7 and use
the Isabelle verification condition generator vcg to reduce it to pure HOL sub-
goals. We perform pattern matching on this Hoare triple to bind the invariant
to %invclmrtp. The ¢ before inv denotes that it is a schematic variable.
Schematic variables are abbreviations for other terms.

Note that assertions are modelled as functions that depend on program
variables. Thus substitution in an assertion is simply function application with
changed parameters.

We first show that the precondition leads to the invariant. Starting from the
precondition, we need to prove %inv ¢ I m r root Null (i.e. #inv ¢ I m r ¢ p pulled
back over the initial assignments ¢t := root; p := Null). In our goal, since p =
Null, the variable stack under the existential is the empty list. This simplifies
things sufficiently, making the proof trivial enough to be omitted.

We then prove the postcondition to be true, assuming the invariant and loop
termination condition hold. Variable stack is the empty list here as well, and the
postcondition is easily shown using parts of the invariant 4, 5, and 6.

The bulk of the proof lies in trying to prove that the invariant is preserved.
Assuming the invariant and loop condition hold, we need to show the invariant
after variable substitution arising from all three arms of the algorithm. After a
case distinction on the if-then-else conditions we are left with three large but
similar subproofs. In this paper we will only walk through the proof of the pop
arm in order to save whatever is left of the reader’s interest. The pop arm serves
as a good illustration as it involves the “seeing is believing” graph reconstruction
step, a decrease in the length of the stack, as well as a change of the graph
mapping r.

fix cmlrtp qroot

let dstack. ?Inv stack = ?invecmlirtp

let 3 stack. ?popInv stack = %inveml (r(p — t)) p (p~.r)

assume (3 stack.?Inv stack) A (p # Null V t # Null A = t".m) (is - A PwhileB)



then obtain stack where inv: ?Inv stack and whileB: ?whileB by blast
let 211 AN 2I2 N\ 218 N 214 N 215 N 216 N\ 217 = ?Inv stack
from inv have ¢1: 211 and i2: ?I2 and 3: ?I3 and i4: ?14

and i5: 215 and i6: 216 and i7: ?I7 by simp+

Command fix introduces new free variables into a proof — the statement is
proved for “arbitrary but fixed values”. We start by dismantling the invariant
and instantiating its seven conjuncts to ?-variables by pattern matching. Com-
mands is and let perform pattern matching and instantiate ?-variables. Note
that 211, etc are merely formulae, i.e. syntax, and that the corresponding facts
i1, etc need to be proven explicitly (from inv using A-elimination). ?Inv is the
original invariant after existential elimination using the witness stack. ?popInv
corresponds to ?Inv pulled back over the pop arm assignments.

We begin the pop arm proof by assuming the two if-then-else conditions and
proving facts that we use later. We introduce a new variable stack-tl to serve as
the witness for 3 stack. ?popInv stack, our goal.

assume ifBI1: t = Null V t".m and ifB2: p~.c
from ifB1 whileB have pNotNull: p # Null by auto
then obtain addr-p where addr-p-eq: p = Ref addr-p by auto
with i/ obtain stack-tl where stack-eq: stack = (addr p) # stack-tl
by auto
with i2 have m-addr-p: p~.m by auto
have stackDist: distinct (stack) using i1 by (rule List-distinct)
from stack-eq stackDist have p-notin-stack-tl: addr p ¢ set stack-tl by simp

We now prove the seven individual conjuncts of 3 stack. ?popInv stack sep-
arately as facts poll to pol7, which we state explicitly. Note that we could also
pattern match ?popInv stack-tl to assign these individual conjuncts to seven 2-
variables, eliminating the need to mention them explicitly. In general, it is a good
idea to instantiate ?-variables to use later in proofs. Like user defined constants
in programs, it makes proofs a lot more tolerant to change and allows one to see
their structure. The disadvantage is that too much pattern matching and back
referencing makes the proof difficult to read.

Our first goal follows directly from our definitions, and spatial separation:

— List property is maintained:

from i1 p-notin-stack-tl ifB2

have poll: List (S cl (r(p — t))) (p".r) stack-tl
by addr-p-eq stack-eq S-def

moreover

Next we have to show that all nodes in stack-tl are marked. This follows
directly from our original invariant, where we know that all nodes in stack are

marked. . .
— Everything on the stack is marked:

from i2 have pol2: V z € set stack-tl. m = by (simp add:stack-eq)
moreover

Next we prove that all nodes are still reachable after executing the pop arm.
We need the help of lemma still-reachable that we have proven separately:



[BC Ra" “A;V(z, y€Rb — Ra. y € Ra™ “ A] = Rb™ “B C Ra™ “ A
A little pattern matching will give us something of the form to which we can
apply this lemma.
— Everything is still reachable:
let (R = reachable ?Ra ?A) = 2?13
let ?Rb = (relS {I, r(p — t)})
let B = {p, p .1}
— Our goal is R = reachable ?Rb ¢B.
have ?Ra” ‘“ addrS ?A = ?Rb™ “ addrS ?B (is ?L = ?R)
proof
show ¢L C ?R
proof (rule still-reachable)
show addrS ?A C ?Rb* ““ addrS ?B by relS-def oneStep-reachable
After filling in the pattern matched variables, this last subgoal is:
addrS {t, p} C (relS {l, r(p — O)})* “ addrS {p, p".7}
and is true as p can be reached by reflexivity, and ¢ by a one step hop from p.
The second subgoal generated by still-reachable is:
YV (z, y)erelS {l, r} — relS {l, r(p — t)}. y € (relS {l, r(p — t)})* “addrS {p, p~.7}
and can be seen to be true as if any such pair (z,y) exists, it has to be (p, p~.r):
show V (z,y) € ?Ra—?Rb. y € (?Rb* “ addrS ?B) by relS-def addrS-def
qed
The other direction of ?L = ?R can be shown to be correct by similar ar-
guments and is proven by appropriately instantiated automatic proof tactics.
show ?R C ?L. — Proof hidden
qed
with 8 have pol3: R = reachable ?Rb ?B by (simp add:reachable-def)
moreover

The proof for the next part of the invariant is a bit more indirect.
— If it is reachable and not marked, it is still reachable using...
let V. 2 € R AN -~ max — z € reachable Ra ¢A = ?1J
let ?Rb = relS {l, r(p — t)} | m
let 2B = {p} U set (map (r(p — t)) stack-tl)
— Our goalisVz. z € R A - mx — x € reachable ?Rb ?B.
let 27 = {t, p".r}
Assuming we have an x that satisfies x € R A = m z, we have © € reachable
?Ra ?A (from i4). What we need is © € reachable YRa ?B. Examining these two
sets, we see that their difference is reachable ?Rb ?T, which is the set of elements
removed from reachable ?Ra ?A as a result of the pop arm. We therefore do the
proof in two stages. First we prove the subset with difference property, and then
show that this fits with what happens in the pop arm.
have ?Ra* ““ addrS ?A C ?Rb™ “ (addrS ?B U addrS ?T)
— Proof hidden; similar to previous use of still-reachable
— We now bring a term from the right to the left of the subset relation.
hence subset: ?Ra™ ‘“ addrS ?A — ?Rb* ““ addrS ?T C ?Rb* * addrS ?B
by blast



have polj: Vz. 2 € RA -~ mx — x € reachable ?Rb ?B
proof
fix x assume a: x € RA - mzx
— First, a disjunction on p ".r used later in the proof
have pDisj:p".r = Null V (p".r # Null A p".r".m) using poll pol2
by auto
— z belongs to the left hand side of subset:
have incl: © € ?Ra™ “addrS ?A using a ij by reachable-def
have excl: © ¢ ?Rb*“ addrS ?T using pDisj ifB1 a by addrS-def
— And therefore also belongs to the right hand side of subset,
— which corresponds to our goal.
from incl excl subset show z € reachable Rb ?B by reachable-def
qed
moreover

Since m is unchanged through the pop arm, the next subgoal is identical to
its counterpart in the original invariant.
— If it is marked, then it is reachable
from i5 have pol5:Vx. mx — x € R .
moreover

The next part of the invariant is what is used to prove that the [ and r are
finally restored. As expected, the major part of this proof follows from 37, the
assertion involving stkOk, expressing what it means for a graph to be recon-
structible.

— If it is not on the stack, then its [ and r fields are unchanged

from i7 i6 ifB2

have pol6: Vz. x ¢ set stack-tl — (r(p — t)) z =iRz ANlz =il z
by addr-p-eq stack-eq

moreover

The last part of the invariant involves the stkOk predicate. The only thing the
pop arm changes here is the r mapping at p. The goal is automatically proven
using the following simplification rule:

z ¢ set xs =
stkOk ¢ 1 (r(z := g)) iL iR (Ref ) zs = stkOk ¢ l r iL iR (Ref x) zs

— If it is on the stack, then its [ and r fields can be reconstructed
from p-notin-stack-tl i7 have pol7: stkOk c¢ I (r(p — t)) iL iR p stack-tl
by stack-eq addr-p-eq

The proof of the pop arm was in the style of an Isabelle “calculation”, with
have statements separated by moreover, which can ultimately be put together
to show the goal at hand. At this point we have proved the individual conjuncts
of ?popInv stack-tl. We will now piece them together and introduce an existential
quantifier, thus arriving exactly at what came out of the verification condition
generator:



ultimately show ?popInv stack-tl by simp
qed
hence dstack. ?popInv stack ..

We similarly prove preservation of the invariant in the swing and push arms

and combine these results to complete the proof.
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