
A Fully Verified Executable LTL Model Checker?

Javier Esparza1, Peter Lammich1, René Neumann1, Tobias Nipkow1,
Alexander Schimpf2, Jan-Georg Smaus3

1 Technische Universität München, {esparza,lammich,neumannr,nipkow}@in.tum.de
2 Universität Freiburg, schimpfa@informatik.uni-freiburg.de

3 IRIT, Université de Toulouse, smaus@irit.fr

Abstract. We present an LTL model checker whose code has been
completely verified using the Isabelle theorem prover. The checker consists
of over 4000 lines of ML code. The code is produced using recent Isabelle
technology called the Refinement Framework, which allows us to split its
correctness proof into (1) the proof of an abstract version of the checker,
consisting of a few hundred lines of “formalized pseudocode”, and (2) a
verified refinement step in which mathematical sets and other abstract
structures are replaced by implementations of efficient structures like
red-black trees and functional arrays. This leads to a checker that, while
still slower than unverified checkers, can already be used as a trusted
reference implementation against which advanced implementations can
be tested. We report on the structure of the checker, the development
process, and some experiments on standard benchmarks.

1 Introduction

Developers of verification tools are often asked if they have verified their own tool.
The question is justified: verification tools are trust-multipliers—they increase
our confidence in the correctness of many other systems—and so their bugs may
have a particularly dangerous multiplicative effect. However, with the current
state of verification technology, proving software correct is dramatically slower
than testing it. The strong advances in verification technology of the last two
decades would have not been possible if verifiers had only deployed verified tools.

In this paper we propose a pragmatic solution to this dilemma, precisely
because of the advances in verification: verified reference implementations of
standard verification services. Verifiers working on sophisticated techniques to
increase efficiency can test their tools against the reference implementation, and
so gain confidence in the correctness of their systems. We present a reference
implementation for an LTL model checker for finite-state systems à la SPIN [10].
The model checker follows the well-known automata-theoretic approach. Given
a finite-state program P and a formula φ, two Büchi automata are constructed
that recognize the executions of P , and all potential executions of P that violate
φ, respectively. The latter is constructed using the algorithm of Gerth et al. [7],
which—while not the most efficient—is particularly suitable for formal proof

? Research supported by DFG grant CAVA, Computer Aided Verification of Automata

because of its inductive structure. Then the product of the two automata is
computed and tested on-the-fly for emptiness. For the emptiness check we use an
improved version of the nested depth-first search algorithm [6,22].

A reference implementation of an LTL model checker must be fully verified (i. e.
it must be proved that the program satisfies a complete functional specification).
At the same time, it must be reasonably efficient—as a rule of thumb, the verifier
should be able to run a test on a medium-size benchmark in seconds or at most a
few minutes. Simultaneously meeting these two requirements poses big challenges.
An imperative programming style allows one to use efficient update-in-place and
random-access data structures, like hash tables; however, producing fully verified
imperative code is hard. In contrast, a functional style, due to its extensive use
of recursion and recursively defined data structures like lists and trees, allows for
standard proofs by induction; however, efficiency can be seriously compromised.
In this paper we choose a functional style (we produce ML code), and overcome
the efficiency problem by means of a development process based on refinement.
We use the Isabelle Collection and Refinement Frameworks [13,16] presented
in Section 5. The Refinement Framework allows us to first prove correct an
inefficient but simple formalization and then refine it to an efficient version in
a stepwise manner. The Collection Framework provides a pre-proved library
of efficient implementations of abstract types like sets by red-black trees or
functional versions of arrays, which we use as replacement of hash tables.

To prove full functional correctness of executable code, we define the programs
in the logic HOL of the interactive theorem prover Isabelle [19]. More precisely,
the programs are defined in a subset of HOL that corresponds to a functional
programming language. After proving the programs correct, ML (or OCaml,
Haskell or Scala) code can be generated automatically from those definitions [8];
like in PVS and Coq, the code generator (which translates equations in HOL
into equations in some functional programming language) is part of the trusted
kernel of Isabelle. Isabelle proofs are trustworthy because Isabelle follows the
LCF architecture and all proofs must go through a small kernel of inference rules.

We conduct some experiments on standard benchmarks to check the efficiency
of our code. To gain a first impression, for products with 106–107 states, our
implementation explores 104–105 states per second. While this is still below the
efficiency of the fastest LTL model checkers, it fulfills the goal stated above:
products with 106–107 states allow to explore many corner cases of the test space.

All supporting material, including the ML code, can be found online at
http://cava.in.tum.de/CAV13.

1.1 Related work

To the best of our knowledge, we present the first fully verified executable LTL
model checker. In previous work [21], we had presented a formalization of the
LTL-to-Büchi translation by Gerth et al. [7] in Isabelle. However, instead of
sets, lists were used everywhere for executability reasons. In the present work,
we have re-formalized it using the Refinement Framework, in order to separate
the abstract specification (in terms of sets) and the concrete implementation

http://cava.in.tum.de/CAV13

(refining sets to red-black trees, ordered lists etc., as appropriate). This increased
modularity and performance. Moreover we have added a second phase that
translates the resulting generalized Büchi automata into ordinary ones.

The first verification of a model checker we are aware of is by Sprenger for
the modal µ-calculus in Coq [23]. No performance figures or larger examples are
reported.

There is a growing body of verified basic software like a C compiler [17] or the
seL4 operating system kernel [11]. With Leroy’s compiler we share the functional
programming approach. In contrast, seL4 is written in C for performance reasons.
But verifying its 10,000 lines required 10–20 person years (depending on what
you count). We believe that verifying a model checker at the C level would
require many times the effort of our verification, and that verifying functional
correctness of significant parts of SPIN is not a practical proposition today. Even
seL4, although very performant, was designed with verification in mind.

Of course the idea of development by refinement is an old one (see Section 5
for references). A popular incarnation is the B-Method [1] for which a number of
support tools exist. The main difference is that B aims at imperative programs
while we aim at functional ones.

2 Isabelle/HOL

Isabelle/HOL [19] is an interactive theorem prover based on Higher-Order Logic
(HOL). You can think of HOL as a combination of a functional programming
language with logic. Although Isabelle/HOL largely follows ordinary mathematical
notation, there are some operators and conventions that should be explained. Like
in functional programming, functions are mostly curried, i. e. of type τ1 → τ2 → τ
instead of τ1 × τ2 → τ . This means that function application is usually written
f a b instead of f(a, b). Lambda terms are written in the standard syntax λx. t
(the function that maps x to t) but can also have multiple arguments λx y. t,
paired arguments λ(x,y). t, or dummy arguments λ-. t. Names may contain
hyphens, as in nested-dfs; do not confuse them with subtraction.

Type variables are written ’a, ’b etc. Compound types are written in postfix
syntax: τ set is the type of sets of elements of type τ , similarly for τ list. Lists
come with the standard functions length, set (converts a list into a set), distinct
(tests if all elements are distinct), and xs!i (returns the ith element of list xs).
The function insert inserts an element into a set.

A record with fields l1, . . . , ln that have the values v1, . . . , vn is written
(|l1 = v1, . . . , ln = vn|). The field l of a given record r is selected just by function
application: l r.

In some places in the paper we have simplified formulas or code marginally to
avoid distraction by syntactic or technical details, but in general we have stayed
faithful to the sources.

3 A First View of the Model Checker

In this section we give an overview of the checker and its correctness proof for
non-specialists in interactive theorem proving. The checker consists of about
4900 lines of ML. The input consists of a system model and an LTL formula.
The modeling language, which we call Boolean programs, is a simple guarded
command language with Booleans as datatype. The atomic propositions of the
formula are of the form x, stating that variable x is currently true.

Boolean programs are compiled using a function that translates them into an
interpreted assembly program, also defined within Isabelle, with a simple notion
of configuration. We then call cava-code, the main function of the model checker;
applied to a compiled Boolean program bpc (more precisely, bpc is always a pair
consisting of a compiled program and an initial configuration) and a formula phi,
cava-code returns either NO-LASSO or LASSO y to-y cyc. NO-LASSO means
that the product automaton contains no accepting lasso, i. e. that every execution
of the program satisfies the property. LASSO y to-y cyc describes an accepting
lasso, which corresponds to a counter-example, i. e. an execution of the program
violating phi: y is an accepting state, to-y is a path leading to it (given as a list of
states), and cyc is a cycle from y to y. The generated ML code looks as follows:

fun cava-code bpc phi =
let val y = LTL-to-BA-code (LTLcNeg phi);

val x = (graph-Delta-code bpc y, graph-F-code y);
in nested-dfs-code x start-node end;

The main subfunctions already appear in the text of cava-code:

– LTL-to-BA-code phi is based on the tableau construction by Gerth et al. [7].
The function takes an LTL formula as input and returns the initial state,
transition function, and acceptance condition of a Büchi automaton for the
formula phi. The construction of [7] proceeds by recursion on the structure
of the formula, which makes it particularly suitable for verification.

– graph-Delta-code bpc y returns the transition function of the product of a
Büchi automaton recognizing the runs of bpc and the Büchi automaton y.
graph-F-code y returns the accepting states of the product. (As the Büchi
automaton of bpc has only final states, it is not required as a parameter of
graph-F-code.)

– nested-dfs-code x start-node implements the algorithm of [22] for emptiness
of Büchi automata. This algorithm is an improvement of the nested depth-
first search algorithm of [9], which in turn improves on the original nested
depth-first search algorithm of [6].

Function LTLcNeg phi returns the negation of phi. So the program negates the
formula, computes a Büchi automaton for it, intersects it with a Büchi automaton
for the Boolean program, and checks for emptiness.

The model checker and its correctness proof are developed in three steps, using
Isabelle’s Refinement Framework [15,16], which is described in Section 5. Here,
we give a brief overview. Each function foo-code in the final ML code is the result

of a three-step process. We first formalize an abstract function foo, together with
its specification. Abstract functions are allowed to use nondeterministic choice,
abstract sets as data structures, etc.; they can be seen as formalized pseudocode.
The abstract functions comprise about 250 lines of Isabelle code, which can
be found in http://cava.in.tum.de/files/CAV13/abstract-functions.pdf.
The first proof step consists of showing that they satisfy their specifications.

In a second step, we formalize a foo-code function based on foo. Here, op-
erations on sets are replaced by corresponding operations on red-black trees
or arrays. For instance, an instruction like “let X ′ = X ∪ {x}” is replaced by
an insert operation on, say, red-black trees. The second proof step consists of
proving that foo-code is a refinement of foo. Loosely speaking, this means that
the result of the (deterministic) foo-code is one of the results of the (usually
nondeterministic) foo. The second step does not significantly increase the code
length.

Finally, foo-code is automatically transformed into ML code (the ML function
keeps the same name). The generated 4900 lines of ML contain the model-checker
and all its prerequisites, like the code for red-black trees and other data structures.

For example, the main theorem proving the correctness of cava, the abstract
function of cava-code, looks as follows:

theorem cava-correct:
cava bpc φ ≤ spec res. res = NO-LASSO

↔ (∀w. BP-accept bpc w −→ w |= φ)

It says that the result of cava bpc φ (where bpc is a compiled Boolean pro-
gram, see above) satisfies the given specification: The result is NO-LASSO iff
∀w. BP-accept bpc w −→ w |= φ. See Section 5 for details on ≤ and spec. Here,
w is an infinite sequence of (i. e. a function from N to) sets of Boolean variables
of the program. The formula BP-accept bpc w is true iff there is a run of the
program bpc such that at time point n exactly the variables w(n) are true. Hence
∀w. . . states that every program run satisfies φ. The following lemma proves the
refinement step:

lemma cava-code-refine:
return (cava-code bpc φ) ≤ cava bpc φ

Once cava-correct and cava-code-refine have been proven, we can (almost
automatically) prove the correctness of cava-code:

lemma cava-code-correct:
cava-code bpc φ = NO-LASSO ↔ (∀w. BP-accept bpc w −→ w |= φ)

4 A Closer Look at the Model Checker

This section describes and assembles the model checker components on the
abstract level. At the end we summarize the size of the complete development.

http://cava.in.tum.de/files/CAV13/abstract-functions.pdf

4.1 Modeling Language

Our Boolean programs are similar to Dijkstra’s guarded command programs,
with all variables ranging over Booleans. There is SKIP, simultaneous assignment
v1,. . . ,vn := b1,...,bn (where the bi are Boolean expressions), sequential com-
position c1; c2, conditional statements IF [(b1,c1),...,(bn,cn)] FI (please
excuse the syntax), and loops WHILE b DO c. We use (terminating) recursion
in HOL to define programs that depend on some parameter. For example, the
program for the n dining philosophers is defined via a function dining(n) that
returns a list of pairs of Boolean expressions and commands: dining(0) = [] and
dining(n+ 1) = . . . dining(n) The overall program is simply WHILE TT DO

IF dining(n) FI (where TT is the constant true).
Since our focus is the model checker, we have refrained from extending our

modeling language further, say with arrays or bounded integers. This would be
straightforward in a higher-order interactive theorem prover, as the formalizations
of much more complicated languages like C [17] and Java [12] have shown.

The semantics of our modeling language is formalized in HOL by a translation
into a simple interpreted assembly language. The reason is speed: executing
commands on the source code level is slow. Because the execution has to be
interleaved with the state space exploration this would slow down the model
checker considerably. The semantics of an assembly language program is given
by a function nexts that computes the list of possible next configurations from
a given configuration. Function nexts always returns a nonempty list (in the
worst case by cycling), which means that every program has a run and all runs
are infinite. Based on nexts, BP-accept is defined just as sketched at the end of
Section 3 above.

4.2 LTL-to-Büchi Translator

The LTL-to-Büchi translator has two parts. The first part implements the al-
gorithm of Gerth et al. [7] to translate an LTL formula into a generalized
Büchi-automaton (LGBA, named LGBArel in the theories due to its transition
relation). Recall that the acceptance condition of a generalized Büchi automaton
consists of a set {F0, . . . , Fm−1} of sets of accepting states. A run is accepting
if it visits each Fi infinitely often. (Ordinary) Büchi automata are the special
case m = 1. The function LTL-to-LGBArel (not shown) implements the tableau
construction by Gerth et al. [7]. The correctness proof shows that the resulting
LGBA recognizes the language of computations satisfied by the formula.

lemma LTL-to-LGBArel-sound:
LTL-to-LGBArel φ ≤ spec AL. ∀w. LGBArel-accept AL w ↔ w |= φ

Since the nested depth-first search algorithm only works for Büchi automata,
not for generalized ones, the second part transforms LGBAs into equivalent Büchi
automata. The construction for this is simple and well-known (see e. g. [4]), but
we use this function to illustrate some points of our approach and (in the next
section) of our use of the Refinement Framework.

We briefly recall the LGBA-to-Büchi construction. For each state q of the
LGBA we have states (q, k) in the Büchi automaton, where 0 ≤ k ≤ m− 1 and
m is the number of acceptance sets. If q−→ q′ is a transition of the LGBA and
q is labeled with a, then we add transitions (q, k)

a−→(q′, k) for every k to the
Büchi automaton, but if q belongs to the i-th acceptance set then instead of
(q, i)

a−→(q′, i) we add (q, i)
a−→(q′, i+ 1 mod m). An additional technical point

is that the LGBA produced by [7] carries labels on the states, and not on the
transitions. Therefore, a label on a state of an LGBA must be translated into
a label on all outgoing transitions of the corresponding Büchi automaton. Our
abstract function for this is LGBA-to-BA, shown below. The function takes an
LGBA as an argument and returns a Büchi automaton with transition function
trans, initial states initial, and a predicate accept defining the accepting states.
The predicate L A q a is true if the state q of A is labeled by a.

LGBArel-to-BA A = do {
Flist ← spec xs. F GBA(A) = set xs ∧ distinct xs;
return

(| BA-∆ =
(λ(q, k) a. if L A q a then

{q’ | (q,q’) ∈ ∆ GBA(A)}
× {if k < length Flist ∧ q ∈ Flist!k

then (k+1) mod (length Flist)
else k}

else {},
BA-I = I GBA(A) × {0},
BA-F = (λ(q, k). (k = 0) ∧ (length Flist = 0 ∨ q ∈ Flist!0)) |) }

The acceptance family of A is a set of sets of states. However, for indexing,
we actually need a list of sets. The second line of the above definition assigns
this list to the name Flist. We prove language equivalence of the LGBA and its
corresponding Büchi automaton:

lemma LGBArel-to-BA-sound: LGBA AL −→
LGBArel-to-Buchi AL ≤
spec AB. ∀w. LGBArel-accept AL w ↔ BA-accept AB w

Assumption LGBArel AL restricts the LGBA to fulfill some consistency properties.
Function LTL-to-BA is the composition of LTL-to-LGBArel and LGBArel-to-BA.
Combining their correctness lemmas yields the overall correctness lemma:

lemma LTL-to-BA-sound:
LTL-to-BA φ ≤ spec AB. ∀w. BA-accept AB w ↔ w |= φ

4.3 Language Emptiness Check

The model checker checks emptiness of the language of the product automaton
using the algorithm of [22]. It is implemented in the function nested-dfs-code,
whose corresponding abstract function is nested-dfs. It is defined on any graph

consisting of an initial vertex x, a successor function succs, and a distinguished
subset F of vertices. In case of the product automaton, these correspond to
the initial state, the transition function, and the set of accepting states of the
automaton, respectively. The correctness theorem is phrased in terms of the
transition relation → = {(a,b) | b ∈ succs a}:

lemma nested-dfs-NO-LASSO-iff:
nested-dfs (succs, F) x ≤ spec res. res = NO-LASSO ↔
¬(∃ v. x→∗ v ∧ v ∈ F ∧ v →+ v)

It expresses that the function returns NO-LASSO iff there is no final state v
reachable from x and reachable (in at least one step) from itself.

4.4 The Model Checker

Now we combine the individual components of the model checker to obtain the
main function cava. We do not show this in the paper (see http://cava.in.

tum.de/CAV13) but sketch (we do not explain all the details) how the individual
correctness lemmas are combined into the main theorem cava-correct above.

In the first step, the input formula φ is translated into a Büchi automaton
by LTL-to-BA. Lemma LTL-to-BA-sound states the correctness of this step.
Then function SA-BA-product (not shown because straightforward) computes
the product of the model AS (which is an automaton-view of the program bpc)
and the result AB of the formula translation. The following lemma tells us that
on the language level this corresponds to intersection:

lemma SA-BA-product-correct:
SA AS ∧ finite(BA-Q AB)
−→ LBA (SA-BA-product AS AB) = LBA AS ∩ LBA AB

Note that LBA A is simply the set of all w such that BA-accept A w. Now we
characterize non-emptiness of the product automaton by the existence of a lasso,
i. e. a path from a start state to an accepting state qf together with a non-empty
loop from qf to qf . The following lemma states the more interesting of the two
implications:

lemma Buchi-accept-lasso:
LBA A 6= ∅
−→ ∃qi qf r1 r2. qi ∈ BA-I A ∧ BA-F A qf

∧ is-finite-run A r1 ∧ head r1 = qi ∧ last r1 = qf
∧ is-finite-run A r2 ∧ head r2 = qf ∧ last r2 = qf ∧ length r2 > 1

Combined with lemma nested-dfs-NO-LASSO-iff above (where x →∗ v cor-
responds to is-finite-run A r1 ∧ head r1 = x ∧ last r1 = v) this tells us that
nested-dfs returns NO-LASSO iff the language is empty. Now it is just a set
theoretic step that takes us to lemma cava-correct because cava builds the prod-
uct of the model and the negated formula, which is empty iff every run of the
program satisfies the formula.

http://cava.in.tum.de/CAV13
http://cava.in.tum.de/CAV13

4.5 Size of the Development

The following table summarizes the size of the development in lines of Isabelle
“code”, i. e. definitions and proofs, where typically 90% are proofs. We have
distinguished the verification on the abstract level from the refinement steps:

Abstract verification Refinement
LTL-to-Büchi 3200 1500
Product construction 800 100
Emptiness check 2500 1600
Top level 500 400

In addition, there are approximately 5000 lines of supporting material that
do not fit into the above classification. In total, this comes to roughly 16,000
lines. Moreover we rely on the separately developed and independent Collections
Framework (30,000 lines, in total) and Refinement Framework (10,000 lines),
described in Section 5.

5 Refinement Framework

When developing formally verified algorithms, there is a trade-off between the
efficiency of the algorithm and the efficiency of the proof: For complex algorithms,
a direct proof of an efficient implementation tends to get unmanageable, as proving
implementation details blows up the proof and obfuscates the main ideas of the
proof. A standard approach to this problem is stepwise refinement [2,3], where
this problem is solved by modularization of the correctness proof: One starts with
an abstract version of the algorithm and then refines it (in possibly many steps) to
the concrete, efficient version. A refinement step may reduce the nondeterminism
of a program and replace abstract datatypes by their implementations. For
example, selection of an arbitrary element from a set may be refined to getting
the head of a list. The main point is, that correctness properties can be transferred
over refinements, such that correctness of the concrete program easily follows
from correctness of the abstract algorithm and correctness of the refinement
steps. The abstract algorithm is not cluttered with implementation details, such
that its correctness proof can focus on the main algorithmic ideas. Moreover, the
refinement proofs only focus on the local changes in a particular refinement step,
not caring about the overall correctness property.

In Isabelle/HOL, refinement is supported by the Refinement Framework [15,16]
and the Isabelle Collection Framework [14,13]. The former framework implements
a refinement calculus [3] based on a nondeterminism monad [24], and the latter
one provides a large collection of verified efficient data structures. Both frame-
works come with tool support to simplify their usage for algorithm development
and to automate canonical tasks such as verification condition generation.

In the nondeterminism monad, each program yields a result that is either a
set of possible values or the special result fail. A result r refines another result
r′, written r ≤ r′, if r′ = fail or if r 6= fail 6= r′ and every value of r is also

dfs E vd v0 = do {
recT (λD (V,v).
if v = vd then return True
else if v ∈ V then return False
else do {
let V = insert v V;
foreachC {v’ | (v,v’) ∈ E} (λx. x=False)

(λv’ -. D (V,v’)) False
}

) ({},v0) }

Algorithm 1: Simple Depth-First-Search Algorithm

function dfs(E : set of pairs of ’a, vd : ’a, v0 : ’a)
return dfs-body (E, vd, v0, ∅, v0)

function dfs-body(E, vd, v0, V : set of ’a, v : ’a)
if v = vd then return true
else if v ∈ V then return false
else

V := V ∪ {v}
ret := false
for all x ∈ {v′ | (v, v′) ∈ E} do

if ret = true then break
else ret := dfs-body (E, vd, v0, V, x)

return ret

Algorithm 2: Simple DFS Algorithm (imperative equivalent)

a value of r′. The result return x contains the single value x, and the result
spec x. Φ contains all values x that satisfy the predicate Φ. Thus, correctness
of a program f w. r. t. precondition P and postcondition Q can be specified as:
P x −→ f x ≤ spec r. Q. Intuitively, this reads as: If the argument x satisfies
precondition P , then all possible result values of f satisfy postcondition Q.

As an example we present a depth-first search algorithm, which is a simplified
version of the nested DFS algorithm used in the model checker. Algorithm 1
uses the syntax of Isabelle/HOL, and Algorithm 2 displays its equivalent in
imperative pseudocode. In Isabelle/HOL, a Haskell-like do-notation is used. The
recT combinator is recursion, where the recursive call is bound to the first
parameter D. The foreachC combinator iterates over all elements of the set, and
additionally has a continuation condition, i. e. the iteration is terminated if the
continuation condition does not hold any more. Here, we use the continuation
condition to break the loop if the recursive call returns true.

We now prove the following lemma, stating that if the algorithm returns true,
then the node vd is reachable from v0:

lemma dfs-sound:
finite {v. (v0,v) ∈ E∗} −→ dfs E vd v0 ≤ spec r. r −→ (v0,vd) ∈ E∗

The proof of this lemma in Isabelle/HOL reads as follows:

unfolding dfs-def
apply (refine-rcg refine-vcg impI

RECT-rule[where
Φ = λ(V,v). (v0,v) ∈ E∗ ∧ V ⊆ {v. (v0,v) ∈ E∗} and
V = finite-psupset ({v. (v0,v) ∈ E∗}) ×lex {}]

FOREACHc-rule[where I = λ- r. r −→ (v0, vd) ∈ E∗])
. . . [3 lines of straightforward Isabelle script]

In the first line, we unfold the definition of dfs. In the apply-command starting
in the second line, we invoke the verification condition generator. The crucial part
here is to specify the right invariants: For the recursion, we need a precondition Φ
and a variant V . The precondition states that the current node v is reachable and
that the set of visited nodes is reachable. The variant states that, in each recursive
call, the set of visited nodes gets closer to the finite set of reachable nodes. This
is required to show termination. For the foreach-loop, we need an invariant I. It
states that, if we break the loop, the target node vd is reachable. The remaining
lines of the proof show that the precondition implies the postcondition, that
the variant is valid, and that the invariant is preserved. As this only involves
argumentation about sets, which enjoy good tool support in Isabelle/HOL, this
can be done in a few straightforward lines of Isabelle script.

Once we have defined the abstract algorithm and proved that it satisfies its
specification, we refine it to an executable version. This includes data refinement,
e. g. implementing sets by red-black trees, and nondeterminism reduction, e. g.
implementing the foreach-loop by in-order iteration over the red-black tree.

A refinement relation is a single-valued relation between concrete and abstract
values (e. g. between red-black trees and sets). Single-valuedness means that a
concrete value must not be related to more than one abstract value.

The concretization function ⇓ lifts a refinement relation R to results. For
programs f and f ′, the statement (x,x’)∈Ri −→ f x ≤ ⇓Ro (f’ x’) means that
program f refines program f ′, where the argument is refined according to relation
Ri, and the result is refined according to the relation Ro.

The refinement of dfs is straightforward, and the Refinement Framework can
generate an executable version together with the refinement proof automatically.

As an example for a more complex refinement, reconsider LGBA-to-Buchi
from Section 4.2, which translates node-labeled generalized Büchi automata to
edge-labeled Büchi automata. Its refined version is Algorithm 3. Here, the input
automaton is represented by a tuple, where the transitions D are represented by
nested red-black trees, the sets of initial states I and final states F are represented
by lists of distinct elements, and the representation of the labeling function L is
not changed. The result automaton is represented by a tuple consisting of

– a successor function, which maps a state and a label to a list of distinct
successor states,

– a list of distinct initial states, and
– the characteristic function of the sets of final states.

LGBArel-to-Buchi-impl ((-, -, D, I, F), L) = do {
let Flist = lsi-to-list F;
return

(λ(q, k) l.
if L q l then

(let k’ = (if (k < length Flist ∧ lsi-memb q (Flist!k))
then (k+1) mod (length Flist) else k) in

let succs = rs-lts-succ-it D q () (λ-. True) lsi-ins (lsi-empty ()) in
lsi-product succs (list-to-lsi [k’]))

else lsi-empty (),
lsi-product I (list-to-lsi [0]),
(λ(q, k). (k = 0) ∧ (length Flist = 0 ∨ lsi-memb q (Flist!0))))

}

Algorithm 3: Implementation of the LGBA-to-Büchi Translation

For this refinement, the spec-statement, which was used to nondeterministically
select a list representation of the set of final states, has been replaced by a
let statement, which deterministically uses the list lsi-to-list F. In the return-
statement, we have replaced the abstract operations on sets (e. g. ×) by their
concrete counterparts (e. g. lsi-product). Note that functions from the Isabelle
Collection Framework follow a standard naming scheme: The prefix lsi denotes
operations on sets represented by lists of distinct elements. Analogously, the
prefix rs denotes operations on sets represented by red-black trees.

The following lemma relates the abstract and the concrete algorithm:

lemma LGBArel-to-BA-impl-refine: (AL, A′L) ∈ LGBArel-impl-rel −→
LGBArel-to-BA-impl AL ≤ ⇓BA-impl-rel (LGBArel-to-BA A′L)

Here, LGBArel-impl-rel relates the input automaton A′L to its representation AL.
Similarly, BA-impl-rel relates the result automaton to its representation. The
proof of the above lemma is quite straightforward. The main proof effort goes
into showing that the successor states of q (abstractly: {q’ | (q,q’)∈∆ GBA(A)})
are correctly implemented by the iterator rs-lts-succ-it, which iterates over the
successor states and collects them in a list.

The algorithm LGBArel-to-BA-impl is already deterministic. However, it is
still defined in the nondeterminism monad, which is not executable. Thus, a further
refinement step removes the nondeterminism monad. This step is fully automatic:
The Refinement Framework defines a constant LGBArel-to-BA-code and proves
the lemma return (LGBArel-to-BA-code AL) ≤ LGBArel-to-BA-impl AL. Fi-
nally, the code-generator exports ML-code for LGBArel-to-BA-code.

Using transitivity of ≤ and monotonicity of the concretization function,
we could combine the above result with Lemma LGBArel-to-BA-sound from
Section 4.2, and obtain:

lemma LGBArel-to-BA-code-sound: (AL, A′L) ∈ LGBArel-impl-rel −→
∃AB. (LGBArel-to-BA-code AL,AB) ∈ BA-impl-rel
∧ (∀w. LGBArel-accept A′L w ↔ BA-accept AB w)

Note, however, that we need to prove such lemmas only for the interface functions
of our tool, not for internal functions like LGBArel-to-BA.

6 Some experiments

As mentioned in the introduction, our project must fulfill two conflicting require-
ments: a mechanized proof of functional correctness, and adequate performance
for a reference implementation. In this section we provide some evidence for the
latter.

The natural tool for a comparison with our checker is SPIN [10], while keeping
in mind that SPIN is implemented in C, while our checker is implemented in
ML. We use SPIN version 6.2.3 with turned-off optimizations (-o1 -o2 -o3

/ -DNOREDUCE), and MLton version 20100608 as the compiler for our checker.
We take three standard well-known and easily scalable benchmarks: the Din-
ing Philosophers, a Readers-Writers system guaranteeing concurrent read but
exclusive write, and the Leader-Filters example of [5].

The comparison with SPIN requires some care because the compilation of
a program into a Kripke structure can lead to substantial differences in the
number of reachable states. For instance, consider a program P1 ‖ . . . ‖ Pn,
where Pi = while true do b := 0 (in a generic program notation). Each parallel
component can be represented by an automaton with one single state and a
self-loop labeled by b := 0. If initially b = 0, then the complete system has one
reachable state. However, a compilation process might also lead to an automaton
that cycles between two states, moving from the first to the second state by
means of a transition labeled by b := 0, and back to the initial state by a silent
transition. This harmless change has a large impact in the state space: the new
version has 2n reachable states, where n is the number of components, leading to
much larger verification times. We have observed this effect in our experiments:
SPIN’s mature compilation process generates fewer states than our tool, where
this aspect has not yet been optimized (cf. Table 1).4

For this reason, we compare not only the time required to explore the state
space of the product automaton, but also the state exploration speed, i. e. the
number of states explored per time unit.

If a property does not hold, then the verificiation time and the number of
states explored may depend on arbitrary choices in how the depth-first search is
conducted. So we only consider properties that hold, for which every tool explores
the complete state space. Table 1 shows verification times for the trivial property
Gtrue. All times are in milliseconds. Since experiments with other properties
yield similar results and no new insight, the results are omitted. We observe that
our checker is between 7 and 26 times slower than SPIN.

We now consider the exploration speed. Since it depends on the number of
states (if the number is large then state descriptors are also large, and more costly

4 A similar effect is observed in the number of states of the Büchi automaton for a
formula: While both SPIN and our checker are based on the algorithm of [7], it is
known that the number of states is very sensitive to simplification heuristics.

Phils RW LF
SPIN Cava SPIN Cava SPIN Cava

Time States Time States # Time States Time States # Time States Time States
10 70 6 839 50 10 20 1 134 11 3 10 4 104 8
11 190 16 2773 132 11 50 2 335 25 4 220 64 3611 134
12 500 39 8857 343 12 100 4 862 53 5 4720 1006 122620 2271
13 1350 95 27957 890 13 230 8 2283 115 6 91200 15305 OoM

Table 1: Construction time (ms) for the state space (in thousands of states)

to process), we plot it against the size of the state space. Overall, our checker
generates about 104–105 states per second (this was also the speed reported in
[10], published in 2003), and is consistent with the fact that after one decade
SPIN is about one order of magnitude faster. Figures 1a–1c show the results for
each of the three benchmarks, with exploration speed in states per millisecond.
Our checker is about 3 times faster than SPIN on Readers-Writers, about eight
times slower on Leader Filters, and about as fast as SPIN on Dining Philosophers.

Summarizing, while our checker is slower than SPIN, we think it is fast enough
for the purpose of a reference implementation. Most of the functionality of an
LTL model checker can be tested on examples with 104–107 states, for which
our checker is about one order of magnitude slower than SPIN, which will be
somewhat reduced once our compilation process is optimized.

We can now also illustrate the importance of the Refinement Framework.
Without it, we would at most have been able to prove correctness of a model
checker with sets implemented as lists. Using the Refinement Framework we can
easily generate code for this “slow” checker, and compare its speed with the
one of the optimized version where sets are implemented as red-black trees. The
result for the dining philosophers is shown in Figure 1d, which uses a double
logarithmic scale. For systems with 105 states the slow checker is already almost
three orders of magnitude slower, which makes it fully inadequate as a reference
implementation.

7 Conclusion

Model checkers are a paradigm case of systems for which both correctness
and efficiency are absolutely crucial. We have presented the—to the best of
our knowledge—first model checker whose code has been fully verified using a
theorem prover and is efficient enough to constitute a reference implementation
for testing purposes. A key element was our use of a refinement process: specify
and verify the model checker on an abstract mathematical level (about 250 lines
of code, not counting comments etc.), then improve efficiency of the algorithms
and data structures by stepwise refinement, and finally let the theorem prover
generate ML code (4900 lines). Our experiments indicate that our checker is only
one order of magnitude slower than SPIN in the range of systems with 106–107

states. We think this result is very satisfactory, since SPIN is a highly optimized
checker, programmed in C; moreover, our results indicate that the distance to

103 104 105 106

50

100

150

Number of states

S
ta

te
s

p
er

m
s

Dining Phils (Cava) Dining Phils (SPIN)

(a) Dining Philosophers

103 104 105 106 107

20

40

60

80

100

Number of states

S
ta

te
s

p
er

m
s

Readers-Writers (Cava) Readers-Writers (SPIN)

(b) Readers-Writers

103 104 105 106 107

0

100

200

300

Number of states

S
ta

te
s

p
er

m
s

Leader Filters (Cava) Leader Filters (SPIN)

(c) Leader Filters

103 104 105

10−1

100

101

102

Number of states

S
ta

te
s

p
er

m
s

Dining Phils (RBT) Dining Phils (Lists)

(d) List vs RBT

Fig. 1: State-exploration speed

SPIN can be shortened by means of optimizations in the compiler that generates
the state space from the high-level system model.

An alternative approach to obtain verified results is to use checkers that
provide certificates of their answer (e. g. a Hoare proof) that can be independently
checked by a trusted certifier [18,20]. The advantage of this approach is a much
smaller formalization effort, and its disadvantage the potentially very large size
of the certificates (worst case: the same order of magnitude as the state space).

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Back, R.J.: On the correctness of refinement steps in program development. Ph.D.
thesis, Department of Computer Science, University of Helsinki (1978)

3. Back, R.J., von Wright, J.: Refinement Calculus — A Systematic Introduction.
Springer (1998)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

5. Choy, M., Singh, A.K.: Adaptive solutions to the mutual exclusion problem. Dis-
tributed Computing 8(1), 1–17 (1994)

6. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design
1(2/3), 275–288 (1992)

7. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) Proc. Int.
Symp. Protocol Specification, Testing, and Verification. IFIP Conference Proceed-
ings, vol. 38, pp. 3–18. Chapman & Hall (1996)

8. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS. LNCS, vol. 6009, pp. 103–117.
Springer (2010)

9. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: Grégoire,
J.C., Holzmann, G.J., Peled, D.A. (eds.) Proc. of the 2nd SPIN Workshop. Discrete
Mathematics and Theoretical Computer Science, vol. 32, pp. 23–32. American
Mathematical Society (1997)

10. Holzmann, G.J.: The Spin Model Checker — Primer and Reference Manual. Addison-
Wesley (2003)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
seL4: formal verification of an OS kernel. In: Matthews, J.N., Anderson, T.E. (eds.)
Proc. ACM Symp. Operating Systems Principles. pp. 207–220. ACM (2009)

12. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. Progr. Lang. Syst. 28(4), 619–695 (2006)

13. Lammich, P., Lochbihler, A.: The Isabelle Collections Framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP. LNCS, vol. 6172, pp. 339–354. Springer (2010)

14. Lammich, P.: Collections framework. In: Archive of Formal Proofs. http://afp.sf.
net/entries/Collections.shtml (Dec 2009), formal proof development

15. Lammich, P.: Refinement for monadic programs. In: Archive of Formal Proofs. http:
//afp.sf.net/entries/Refine_Monadic.shtml (2012), formal proof development

16. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP. LNCS, vol. 7406,
pp. 166–182. Springer (2012)

17. Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43,
363–446 (2009)

18. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV. LNCS, vol. 2102, pp. 2–13. Springer (2001)

19. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

20. Peled, D., Pnueli, A., Zuck, L.D.: From falsification to verification. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS. LNCS, vol. 2245, pp. 292–304. Springer
(2001)

21. Schimpf, A., Merz, S., Smaus, J.G.: Construction of Büchi automata for LTL model
checking verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel,
M. (eds.) TPHOLs. LNCS, vol. 5674, pp. 424–439. Springer (2009)

22. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halbwachs,
N., Zuck, L. (eds.) TACAS. LNCS, vol. 3440, pp. 174–190. Springer (2005)

23. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Steffen,
B. (ed.) TACAS. LNCS, vol. 1384, pp. 167–183. Springer (1998)

24. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science
2, 461–478 (1992)

http://afp.sf.net/entries/Collections.shtml
http://afp.sf.net/entries/Collections.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml

	A Fully Verified Executable LTL Model Checker

