
Verified Approximation Algorithms

Robin Eßmann1, Tobias Nipkow1, and Simon Robillard2

1 Technische Universität München
2 IMT Atlantique

Abstract. We present the first formal verification of approximation al-
gorithms for NP-complete optimization problems: vertex cover, indepen-
dent set, load balancing, and bin packing. We uncover incompletenesses
in existing proofs and improve the approximation ratio in one case.

1 Introduction

Approximation algorithms for NP-complete problems [12] are a rich area of re-
search untouched by automated verification. We present the first formal verifi-
cations of three classical and one lesser known approximation algorithm. Three
of these algorithms had been verified on paper by program verification experts
[3,4]. We found that their claimed invariants need additional conjuncts before
they are strong enough to be real invariants. That is, their proofs are incomplete.
The fourth algorithm only comes with a sketchy informal proof.

To put an end to this situation we formalized the correctness proofs of four
approximation algorithms for fundamental NP-complete problems in the theo-
rem prover Isabelle/HOL [9,10]. We verified (all proofs are online [6]) that

– the classic approximation algorithm for a minimal vertex cover is a k-approxi-
mation algorithm for rank k hypergraphs;

– Wei’s algorithm for a maximal independent set [13] is a ∆-approximation
algorithm for graphs with maximum degree ∆;

– the greedy algorithm for the load balancing problem is a 3
2 -approximation

algorithm if job loads are sorted and a 2-approximation algorithm if job loads
are unsorted [8];

– the bin packing algorithm by Berghammer and Reuter [4] is a 3
2 -approxima-

tion algorithm.

Isabelle not only helped finding mistakes in pen-and-paper proofs but also en-
couraged proof refactoring that lead to simpler proofs, and in one case, to a
stronger result: The invariant given by Berghammer and Müller for Wei’s algo-
rithm [3] is sufficient to show that the algorithm has an approximation ratio of
∆ + 1. We managed to simplify their argument significantly which lead to an
improved approximation ratio of ∆.

All algorithms are expressed in a simple imperative WHILE-language. In each
case we show that the approximation algorithm computes a valid solution that
is at most a constant factor worse than an optimum solution. The polynomial
running time of the approximation algorithm is easy to see in each case.

https://orcid.org/0000-0002-3807-924X
https://orcid.org/0000-0003-0730-515X
https://orcid.org/0000-0003-4751-380X

2 Isabelle/HOL and Imperative Programs

Isabelle/HOL is largely based on standard mathematical notation but with some
differences and extensions.

Type variables are denoted by ′a, ′b, etc. The notation t :: τ means that
term t has type τ . Except for function types ′a ⇒ ′b, type constructors follow
postfix syntax, e.g. ′a set is the type of sets of elements of type ′a. Function
some :: ′a set ⇒ ′a picks an arbitrary element from a set; the result is unspecified
if the set is empty.

The types nat and real represent the sets N and R. In this paper we drop the
coercion function real :: nat ⇒ real. The set {m..n} is the closed interval [m,n].

The Isabelle/HOL distribution comes with a simple implementation of Hoare
logic where programs are annotated with pre- and post-conditions and invariants
(all in HOL) as in this example, where all variables are of type nat:

{m = 0 ∧ p = 0}
WHILE m ̸= a INV {p = m∗b} DO p := p+b; m := m+1 OD
{p = a∗b}

The box around the program means that it has been verified. All our proofs em-
ploy a VCG and essentially reduce to showing the preservation of the invariants.

3 Vertex Cover

We verify the proof in [3] that the classic greedy algorithm for vertex cover is
a 2-approximation algorithm. In fact, we generalize the setup from graphs to
hypergraphs. A hypergraph is simply a set of edges E, where an edge is a set
of vertices of type ′a. A vertex cover for E is a set of vertices C that intersects
with every edge of E:

vc :: ′a set set ⇒ ′a set ⇒ bool
vc E C = (∀ e∈E. e ∩ C ̸= ∅)

A matching (matching :: ′a set set ⇒ bool) is a set of pairwise disjoint sets.
The following is a key property that relates vc and matching:

finite C ∧ matching M ∧ M ⊆ E ∧ vc E C −→ |M | ≤ |C |

We fix a rank-k hypergraph E :: ′a set set assuming ∅ /∈ E, finite E and e ∈
E −→ finite e ∧ |e| ≤ k.

We have verified the well known greedy algorithm that computes a vertex
cover C for E. It keeps picking an arbitrary edge that is not covered by C yet
until all vertices are covered. The final C has at most k times as many vertices
as any vertex cover of E (which is essentially optimal [1]).

2

{True}
C :=∅; F := E;
WHILE F ̸= ∅ INV {invar C F}
DO C := C ∪ some F; F := F − {e ′ ∈ F | some F ∩ e ′ ̸= ∅} OD
{vc E C ∧ (∀C ′. finite C ′ ∧ vc E C ′ −→ |C | ≤ k ∗ |C ′|)}

where invar is the following invariant:
invar :: ′a set ⇒ ′a set set ⇒ bool
invar C F =
(F ⊆ E ∧ vc (E − F) C ∧ finite C ∧ (∃M . inv_matching C F M))

inv_matching C F M =
(matching M ∧ M ⊆ E ∧ |C | ≤ k ∗ |M | ∧ (∀ e∈M . ∀ f∈F. e ∩ f = ∅))

The key step in the program proof is that the invariant is invariant:
Lemma 1. F ̸= ∅ ∧ invar C F −→

invar (C ∪ some F) (F − {e ′ ∈ F | some F ∩ e ′ ̸= ∅})

Our invariant is stronger than the one in [3] which lacks F ⊆ E. But without
F ⊆ E the claimed invariant is not invariant (as acknowledged by Müller-Olm).

4 Independent Set

As in the previous section, a graph is a set of edges. An independent set of a
graph E is a subset of its vertices such that no two vertices are adjacent.

iv :: ′a set set ⇒ ′a set ⇒ bool
iv E S = (S ⊆

∪
E ∧ (∀ v1 v2. v1 ∈ S ∧ v2 ∈ S −→ {v1, v2} /∈ E))

We fix a finite graph E :: ′a set set such that all edges of E are sets of
cardinality 2. The set of vertices

∪
E is denoted V, and the maximum number

of neighbors for any vertex in V is denoted ∆. We show that the greedy algorithm
proposed by Wei is a ∆-approximation algorithm. The proof is inspired by one
given in [3]. In particular, the proof relies on an auxiliary variable P, which is
not needed for the execution of the algorithm, but is used for bookkeeping in
the proof. In [3], P is initially a program variable and is later removed from the
program and turned into an existentially quantified variable in the invariant. We
directly use the latter representation.

{ True }
S := ∅; X :=∅;
WHILE X ̸= V INV { ∃P. inv_partition S X P }
DO x := some (V − X); S := S ∪ {x}; X := X ∪ neighbors x ∪ {x} OD
{ iv E S ∧ (∀S ′. iv E S ′ −→ |S ′| ≤ |S| ∗ ∆) }

3

To keep the size of definitions manageable, we split invariant in two. The first
part is not concerned with P, but suffices to prove the functional correctness of
the algorithm, i.e. that it outputs an independent set of the graph:

inv_iv :: ′a set ⇒ ′a set ⇒ bool
inv_iv S X =
(iv E S ∧ X ⊆ V ∧ (∀ v1∈V − X. ∀ v2∈S. {v1, v2} /∈ E) ∧ S ⊆ X)

This invariant is taken almost verbatim from [3], except that in [3] it says that S
is an independent set of the subgraph generated by X. This is later used to show
that the x picked at each iteration from V − X is not already in S. Defining
subgraphs adds unnecessary complexity to the invariant. We simply state S ⊆
X, together with the fact that S is an independent set of the whole graph.

We now extend the invariant with properties of the auxiliary variable P.

inv_partition :: ′a set ⇒ ′a set ⇒ ′a set set ⇒ bool
inv_partition S X P =
(inv_iv S X ∧∪

P = X ∧ (∀ p∈P. ∃ s∈V . p = {s} ∪ neighbors s) ∧ |P| = |S| ∧ finite P)

We can view the set P as an auxiliary program variable. In order to satisfy
the invariant, P would be initially empty and the loop body would include the
assignement P := P ∪ {neighbors x ∪ {x}}. Intuitively, P contains the sets
of vertices that are added to X at each iteration (or more precisely, an over-
approximation, since some vertices in neighbors x may have been added to X in
a previous iteration). Instead of adding an unnecessary variable to the program,
we only use the existentially quantified invariant. The assignments described
above correspond directly to instantiations of the quantifier that are needed
to solve proof obligations. This is illustrated with the following lemma, which
corresponds to the preservation of the invariant:

Lemma 2. (∃P. inv_partition S X P) ∧ x ∈ V − X −→
(∃P ′. inv_partition (S ∪ {x}) (X ∪ neighbors x ∪ {x}) P ′)

The existential quantifier in the antecedent yields a witness P. After instantiating
the quantifier in the succedent with P ∪ {neighbors x ∪ {x}}, the goal can be
solved straightforwardly. Finally, the following lemma combines the invariant
and the negated post-condition to prove the approximation ratio:

Lemma 3. inv_partition S V P −→ (∀S ′. iv E S ′ −→ |S ′| ≤ |S| ∗ ∆)

To prove it, we observe that any set p ∈ P consists of a vertex x and its neighbors,
therefore an independent set S ′ can contain at most ∆ of the vertices in p, thus
|S ′| ≤ |P| ∗ ∆. Furthermore, as indicated by the invariant, |P| = |S|.

Compared to the proof in [3], our invariant describes the contents of the set P
more precisely, and thus yields a better approximation ratio. In [3], the invariant
merely indicates that X =

∪
P, together with two cardinality properties: ∀ p∈P.

|p| ≤ ∆ + 1 and |P| ≤ |S|. Taken with the negated post-condition, this invariant

4

can be used to show that for any independent set S ′, we have |S ′| ≤ |S| ∗ (∆ +
1). The proof of this lemma makes use of the following (in)equalities: |S ′| ≤ |V |,
|V | = |

∪
P|, |

∪
P| ≤ |P| ∗ (∆ + 1) and finally |P| ∗ (∆ + 1) ≤ |S| ∗ (∆ +

1). Note that this only relies on the trivial fact that an independent set cannot
contain more vertices than the graph. By contrast, our own argument takes into
account information regarding the edges of the graph.

Although this proof results in a weaker approximation ratio than our own,
it yields a useful insight: an approximation ratio is given by the cardinality of
the largest set p ∈ P (i.e., the largest number of vertices added to X during
any given iteration). In the worst case, this is equal to ∆ + 1, but in practice
the number may be smaller. This suggests a variant of the algorithm that stores
that value in a variable r, as described in [3]. At every iteration, the variable r
is assigned the value max r |{x} ∪ neighbors x − X|. Ultimately, the algorithm
returns both the independent set S and the value r, with the guarantee that |S ′|
≤ |S| ∗ r for any independent set S ′.

We also formalized this variant and proved the aforementioned property.
The proof follows the idea outlined above, but does away with the variable P
entirely: instead, the invariant simply maintains that inv_iv S X ∧ |X| ≤ |S| ∗ r,
and the proof of preservation is adapted accordingly. Indeed, this demonstrates
that the argument used in [3] does not require an auxiliary variable nor an
existentially quantified invariant. For the proof of the approximation ratio ∆, a
similar simplification is not as easy to obtain, because the argument relies on
a global property of the graph (a constraint that edges impose on independent
sets) that is not easy to summarize in an inductive invariant.

So far, we have only considered an algorithm where the vertex x is picked
non-deterministically. An obvious heuristic is to pick, at every iteration, the
vertex with the smallest number of neighbors among V − X. Halldórsson and
Radhakrishnan [7] prove that this heuristic achieves an approximation ratio of
(∆ + 2) / 3. However their proof is far more complex than the arguments
presented here. It is also not given as an inductive invariant, instead relying on
case analysis for different types of graphs. This is beyond the scope of our paper.

5 Load Balancing
Our starting point for the load balancing problem is [8, Chapter 11.1]. We need
to distribute n :: nat jobs on m :: nat machines with 0 < m. A job j ∈ {1..n} has a
load t(j) :: nat. Variables m, n, and t are fixed throughout this section. A solution
is described by a function A that maps machines to sets of jobs: k ∈ {1..m} has
job j assigned to it iff j ∈ A(k). The sum of job loads on a machine is given by
a function T that is derived from t and A: (

∑
j∈A k. t j) = T k. Predicate lb

defines when T and A are a partial solution for j ≤ n jobs:
lb :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool
lb T A j =
((∀ x∈{1..m}. ∀ y∈{1..m}. x ̸= y −→ A x ∩ A y = ∅) ∧
(
∪

x∈{1..m} A x) = {1..j} ∧ (∀ x∈{1..m}. (
∑

y∈A x. t y) = T x))

5

It consists of three conjuncts. The first ensures that the sets returned by A are
pairwise disjoint, thus, no job appears in more than one machine. The second
conjunct ensures that every job x ∈ {1..j} is contained in at least one machine.
It also ensures that only jobs {1..j} have been added. The final conjunct ensures
that T is correctly defined to be the total load on a machine. To ensure that
jobs are distributed evenly, we need to consider the machine with maximum
load. This load is referred to as the makespan of a solution (where f ‘ I is the
image of f over I):

makespan :: (nat ⇒ nat) ⇒ nat
makespan T = Max (T ‘ {1..m})

The greedy approximation algorithm outlined in [8] relies on the ability to
determine the machine k ∈ {1..m} that has a minimum combined load. As the
goal is to approximate the optimum in polynomial time, a linear scan through T
suffices to find the machine with minimum load. However, other methods may
be considered to further improve time complexity. To determine the machine
with minimum load, we will use the following function:

mink :: (nat ⇒ nat) ⇒ nat ⇒ nat
mink T 0 = 1
mink T (x + 1) =
(let k = mink T x in if T (x + 1) < T k then x + 1 else k)

We will focus on the approximation factor of 3
2 , which can be proved if

the job loads are assumed to be sorted in descending order. The proof for the
approximation factor of 2 if jobs are unsorted is very similar and we describe
the differences at the end. We say that j jobs are sorted in descending order if
sorted holds:

sorted :: nat ⇒ bool
sorted j = (∀ x∈{1..j}. ∀ y∈{1..x}. t x ≤ t y)

Below we prove the following conditional Hoare triple that expresses the
approximation factor and functional correctness of the algorithm given in [8]:

sorted n −→
{True}
T := (λ_. 0); A := (λ_. ∅); j := 0;
WHILE j < n INV {inv2 T A j}
DO i := mink T m; j := j + 1;

A := A(i := A(i) ∪ {j}); T := T(i := T(i) + t(j))
OD
{lb T A n ∧
(∀T ′ A ′. lb T ′ A ′ n −→ makespan T ≤ 3 / 2 ∗ makespan T ′)}

Property sorted n is not part of the precondition because it is not influenced
by the algorithm and thus there is no need to prove that it remains unchanged.

6

Therefore we made sorted n an assumption of the whole Hoare triple. The no-
tation f (a := b) denotes an updated version of function f that maps a to b and
behaves like f otherwise. Thus an assignment f := f (i := b) is nothing but the
conventional imperative array update notation f [i] := b.

Functional correctness follows because each iteration extends a partial solu-
tion for j jobs to one for j + 1 jobs:

Lemma 4. lb T A j ∧ x ∈ {1..m} −→
lb (T(x := T x + t (j + 1))) (A(x := A x ∪ {j + 1})) (j + 1)

Moreover, it is easy to see that the initialization establishes lb T A j.
To prove the approximation factor in both the sorted and unsorted case, the

following lower bound is important:

Lemma 5. lb T A j −→ (
∑j

x = 1 t x) / m ≤ makespan T

This is a result of
∑m

x=1 T (x) =
∑j

x=1 t(x) together with this general property
of sums: finite A ∧ A ̸= ∅ −→ (

∑
a∈A. f a) ≤ |A| ∗ Max (f ‘ A).

A similar observation applies to individual jobs. Any job must be a lower
bound on some machine, as it is assigned to one and, by extension, it must also
be a lower bound of the makespan:

Lemma 6. lb T A j −→ Max0 (t ‘ {1..j}) ≤ makespan T

As any job load is a lower bound on the makespan over the machines, the job
with maximum load must also be such a lower bound. Note that Max0 returns
0 for the empty set.

When jobs are sorted in descending order, a stricter lower bound for an
individual job can be established. We observe that an added job is at most as
large as the jobs preceding it. Therefore, if a machine contains at least two jobs,
this added job is only at most half as large as the makespan. We can use this
observation by assuming the machines to be filled with more than m jobs, as
this will ensure that some machine must contain at least two jobs.

Lemma 7. lb T A j ∧ m < j ∧ sorted j −→ 2 ∗ t j ≤ makespan T

Note that this lower bound only holds if there are strictly more jobs than ma-
chines. One must, however, also consider how the algorithm behaves in the other
case. One may intuitively see that the algorithm will be able to distribute the
jobs such that every machine will only have at most one job assigned to it, mak-
ing the algorithm trivially optimal. To prove this, we need to show the following
behavior of mink:

Lemma 8.
1. x ∈ {1..m} ∧ T x = 0 −→ T (mink T m) = 0
2. x ∈ {1..m} ∧ T x = 0 −→ mink T m ≤ x

They can be shown by induction on the number of machines m.
As the proof in [8] is only informal, Kleinberg and Tardos do not provide any

loop invariant. We propose the following invariant for sorted jobs:

7

inv2 :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool
inv2 T A j =
(lb T A j ∧ j ≤ n ∧
(∀T ′ A ′. lb T ′ A ′ j −→ makespan T ≤ 3 / 2 ∗ makespan T ′) ∧
(∀ x > j. T x = 0) ∧ (j ≤ m −→ makespan T = Max0 (t ‘ {1..j})))

The final two conjuncts relate to the trivially optimal behavior of the algorithm
if j ≤ m. The penultimate conjunct shows that only as many machines can be
occupied as there are available jobs. The final conjunct ensures that every job
is distributed on its own machine, making the makespan equivalent to the job
with maximum load.

It should be noted that if the makespan is sufficiently large, an added job
may not increase the makespan at all, as the machine with minimum load com-
bined with the job may not exceed the previous makespan. As such, we will
also consider the possibility that an added job can simply be ignored without
affecting the overall makespan.
Lemma 9. makespan (T(x := T x + y)) ̸= T x + y −→
makespan (T(x := T x + y)) = makespan T
To make use of this observation, we need to be able to relate the makespan of a
solution with the added job to the makespan of a solution without it. One can
easily show the following by removing j + 1 from the solution:
Lemma 10. lb T A (j + 1) −→

(∃T ′ A ′. lb T ′ A ′ j ∧ makespan T ′ ≤ makespan T)

We can now prove the preservation of inv2. Let i = mink T m be the machine
with minimum load. We define:

Tg := T (i := T(i) + t(j + 1)) Ag := A (i := A(i) ∪ {j + 1})
We begin with a case distinction. If j + 1 ≤ m, we can make use of the addi-
tional conjuncts to prove the trivially optimal behavior. We first note in-range:
j + 1 ∈ {1..m}. Moreover, from the penultimate conjunct, T(j + 1) = 0. Com-
bining this with Lemma 8.1, we can see that T(i) = 0. Therefore Tg(i) = t(j +
1) and with the final conjunct of the assumed invariant, the makespan of Tg re-
mains equivalent to the job with maximum load. To prove that the penultimate
conjunct is preserved, we again use in-range, T(j + 1) = 0, and Lemma 8.2 to
prove that i ≤ j + 1. Moreover, Tg only differs from T by the modification of
machine i. Thus, the penultimate conjunct for j + 1 jobs is preserved as well.
From Lemma 6 we can then see that, as the makespan of Tg is equivalent to
the job with maximum load, it must be trivially optimal. Functional correctness
can be shown using Lemma 4, and proving the preservation of the remaining
conjunct is trivial. We now come to the case j + 1 > m. We first show that
the penultimate conjunct is preserved (the final conjunct can be ignored, as
¬ j + 1 ≤ m). This follows from the correctness of mink, as the index returned
by it has to be in {1..m} as long as m > 0. Therefore, we can simply show this
from the penultimate conjunct of the assumed invariant. We now come to the
proof of the approximation factor:

8

∀T ′ A ′. lb T ′ A ′ (j + 1) −→ makespan Tg ≤ 3 / 2 ∗ makespan T ′

To prove it, we fix T1 and A1 such that lb T1 A1 (j + 1). Using Lemma 10,
one can now obtain T0 and A0 such that lb T0 A0 j and MK : makespan T0 ≤
makespan T1. From the assumed loop invariant, we can now show:

makespan T ≤ 3

2
makespan T0 by inv2-def

≤ 3

2
makespan T1 by MK

To prove the makespan for j + 1 jobs, there are now two cases to consider: The
added job j + 1 contributes to the makespan or it does not. The case in which
it does not can be shown by combining the previous calculation with Lemma 9.
For the first case, we may then assume that makespan Tg = T(i) + t(j + 1).
Like in Lemma 5, we note that sum-eq: (

∑m
x = 1 T x) = (

∑j
x = 1 t x). Moreover,

min-avg: m ∗ T (mink T m) ≤ (
∑m

i = 1 T i). This allows us to calculate the
following lower bound for T(i):

m ∗ T(i) ≤
m∑
i=1

T (i) =

j∑
i=1

t(i) by min-avg and sum-eq

⇐⇒ T (i) ≤
∑j

i=1 t(i)

m
because m > 0

≤ makespan T0 ≤ makespan T1 by Lemma 5 and MK

From Lemma 7 we can also show that t(j + 1) is a lower bound for 1
2 of the

makespan of T1. Therefore:

makespan Tg = T(i) + t(j + 1) ≤ makespan T1 +
makespan T1

2

=
3

2
makespan T1

The proof of functional correctness and remaining conjuncts is again trivial.
Let us now consider the unsorted case where one can still show an approxi-

mation factor of 2. The algorithm is identical but the invariant is simpler:

inv1 T A j =

(lb T A j ∧ j ≤ n ∧ (∀T ′ A ′. lb T ′ A ′ j −→ makespan T ≤ 2 ∗ makespan T ′))

The proof for this invariant is a simpler version of the proof above: We do
not need the initial case distinction (case j + 1 ≤ m need not be considered
separately) and to prove the approximation factor we use Lemma 6 instead of
Lemma 7 to obtain a bound for t(j + 1).

9

6 Bin Packing

We finally consider the linear time 3
2 -approximation algorithm for the bin pack-

ing problem proposed by Berghammer and Reuter [4]. The bin packing problem
is similar to the load balancing problem described in the previous section. The
main distinction is that in the load balancing problem, the number of machines
is fixed, while the load a single machine can hold is unbounded. With the bin
packing problem, this is essentially reversed. The maximum capacity a single bin
can hold is limited by some fixed c. However, we are free to use as many bins
as necessary to achieve a solution. The goal is now to minimize this number of
bins used instead of the maximum capacity of a bin.

For the bin packing problem we are given a finite, non-empty set of objects U
:: ′a set, whose weights are given by a function w :: ′a ⇒ real. Note that in this
paper nats are implicitly converted to reals if needed. The weight of an object in
U is strictly greater than zero, but bounded by a maximum capacity c :: nat. The
abbreviation W (B) ≡

∑
u∈B w(u) denotes the weight of a bin B ⊆ U. The set

U can also be separated into small and large objects. An object u is considered
small if w(u) ≤ c

2 . An object is large if the opposite is the case. We will begin by
assuming that all small objects in U can be found in a set S, and large objects
in U can be found in a set L, such that S ∪ L = U and S ∩ L = ∅. Of course L
and S can also be computed from U in linear time. Variables U, w, c, L, and S
are fixed throughout this section.

A solution P to the bin packing problem is then defined as follows:

bp :: ′a set set ⇒ bool
bp P = (partition_on U P ∧ (∀B∈P. W B ≤ c))

P contains all the bins necessary such that it is a correct partition of U. To check
for this, we use a function partition_on :: ′a set ⇒ ′a set set ⇒ bool which can
be found in the Isabelle HOL-Library. We add the final conjunct to ensure that
no bin B ∈ P exceeds the maximum capacity c.

The idea behind the algorithm proposed by Berghammer and Reuter is to
split the solution P into two partial solutions P1 and P2. At every step of the
algorithm we consider two bins B1 and B2 which we try to fill with remaining
objects from V ⊆ U that have not been assigned yet. If adding the object to
B1 or B2 would cause it to exceed its maximum capacity, the bin is moved into
the partial solution P1 or P2 respectively and cleared. Once there are no small
objects left, the solution is the union of the partial solutions P1 and P2, the bins
B1 and B2 (if they still contain objects), and the remaining large objects, which
each receive their own bin, as no two large objects can fit into a single bin. To
ensure that no empty bins are added to the solution, we define:

[[·]] :: ′a set ⇒ ′a set set
[[B]] = (if B = ∅ then ∅ else {B})

The final union can now be written as P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V}
where V contains the remaining large elements. The algorithm can be specified
by the following Hoare triple:

10

{True}
P1 := ∅; P2 := ∅; B1 := ∅; B2 := ∅; V := U ;
WHILE V ∩ S ̸= ∅ INV {inv3 P1 P2 B1 B2 V} DO
IF B1 ̸= ∅ THEN u := some (V ∩ S)
ELSE IF V ∩ L ̸= ∅ THEN u := some (V ∩ L)

ELSE u := some (V ∩ S) FI FI ;
V := V − {u};
IF W (B1) + w(u) ≤ c THEN B1 := B1 ∪ {u}
ELSE IF W (B2) + w(u) ≤ c THEN B2 := B2 ∪ {u}

ELSE P2 := P2 ∪ [[B2]]; B2 := {u} FI ;
P1 := P1 ∪ [[B1]]; B1 := ∅ FI

OD;
P := P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V}
{bp P ∧ (∀Q. bp Q −→ |P| ≤ 3 / 2 ∗ |Q|)}

Berghammer and Reuter prove functional correctness using a simplified ver-
sion of this algorithm where an arbitrary element of V is assigned to u. This
allows for fewer case distinctions, as the first IF−THEN−ELSE block can be
ignored. One needs to find a loop invariant that implies functional correctness
and prove that it is preserved in the following cases:

Case 1 The object fits into B1:

inv1 P1 P2 B1 B2 V ∧ u ∈ V ∧ W B1 + w u ≤ c −→
inv1 P1 P2 (B1 ∪ {u}) B2 (V − {u})

Case 2 The object fits into B2:

inv1 P1 P2 B1 B2 V ∧ u ∈ V ∧ W B2 + w u ≤ c −→
inv1 (P1 ∪ [[B1]]) P2 ∅ (B2 ∪ {u}) (V − {u})

Case 3 The object fits into neither bin:

inv1 P1 P2 B1 B2 V ∧ u ∈ V −→
inv1 (P1 ∪ [[B1]]) (P2 ∪ [[B2]]) ∅ {u} (V − {u})

Berghammer and Reuter [4] define the following predicate as their loop invariant:

inv1 P1 P2 B1 B2 V = bp (P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V})

As it turns out, this invariant is too weak. Assume inv1 P1 P2 B1 B2 V. Suppose
P1 (alternatively P2) already contains the non-empty bin B1. Note that this does
not violate the invariant because P1 ∪ [[B1]] = P1. Now, if the algorithm modifies
B1 by adding an element from V such that B1 becomes some B1

′ then B1 ∩
B1

′ ̸= ∅ and B1 ∈ P1, i.e., B1
′ is no longer disjoint from the elements of P. The

same issue arises with the added object u ∈ V, if {u} is already in P1 or P2. To
account for such cases, we will require additional conjuncts:

11

inv1 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool
inv1 P1 P2 B1 B2 V =
(bp (P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V}) ∧∪

(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) = U − V ∧
B1 /∈ P1 ∪ P2 ∪ [[B2]] ∧
B2 /∈ P1 ∪ [[B1]] ∪ P2 ∧
(P1 ∪ [[B1]]) ∩ (P2 ∪ [[B2]]) = ∅)

There are different ways to strengthen the original inv1. We use the above addi-
tional conjuncts as they can be inserted in existing proofs with little modification,
and their preservation in the invariant can be proved quite trivially. The first
additional conjunct ensures that no element still in V is already in a bin or
partial solution. The second and third additional conjuncts ensure distinctness
of the bins B1 and B2 with the remaining solution. The final conjunct ensures
that the partial solutions with their added bins are disjoint from each other.
It should be noted that the last conjunct is not necessary to prove functional
correctness. It will, however, be needed in later proofs, and as its preservation
in this invariant for the simplified algorithm can be used in the proof of the full
algorithm, one can save redundant case distinctions by proving it now. Another
advantage of proving it now is that later invariants can remain identical to the
invariants proposed in the paper.

We now prove the preservation of inv1 in all three cases. As we assume the
invariant to hold before the execution of the loop body, we can see from the first
additional conjunct

∪
(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) = U − V and the assumption

u ∈ V that not-in: ∀B ∈ P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]. u /∈ B holds. This will be
needed for all three cases. Now, we can begin with Case 1. We first show

bp (P1 ∪ [[B1 ∪ {u}]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V − {u}})

One can see that this union does not contain the empty set. The object u is
now moved from a singleton set into B1. Therefore, the union of all bins will
again return U. To show that this union remains pairwise disjoint, we can use
not-in and the second additional conjunct of inv1 to show that u is not yet
contained in the partial solution and B1 is distinct from any other bin. Therefore,
combined with the assumption that the union was pairwise disjoint before the
modification, the union remains pairwise disjoint. To prove the preservation of
the second conjunct of bp, we need to show that the bin weights do not exceed
their maximum capacity c. The only bin that was changed in this step is B1,
which has increased its weight by w(u). As we are in Case 1, we can assume that
u fits into B1, W (B1) + w(u) ≤ c. Therefore, this conjunct holds as well. Now,
one only needs to show that the additional conjuncts are preserved. For the first
additional conjunct, we can again use not-in to show:∪

(P1 ∪ [[B1 ∪ {u}]] ∪ P2 ∪ [[B2]]) = U − (V − {u})

⇐⇒
∪

(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) ∪ {u} = U − (V − {u}) by not-in

⇐⇒
∪

(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) ∪ {u} = U − V ∪ {u} by u ∈ U

12

Using the first additional conjunct of the assumed invariant, one can see that
this must hold. The remaining conjuncts

B1 ∪ {u} /∈ P1 ∪ P2 ∪ [[B2]]
B2 /∈ P1 ∪ [[B1 ∪ {u}]] ∪ P2

(P1 ∪ [[B1 ∪ {u}]]) ∩ (P2 ∪ [[B2]]) = ∅

can be automatically proved in Isabelle using not-in and the assumption that
the conjuncts of inv1 P1 P2 B1 B2 V held before the modification. The proof for
Case 2 is almost identical to that of Case 1. The main difference is that the focus
now lies on B2 and the fact that B1 is now emptied and the previous contents
added to the partial solution P1. One therefore has to show that

bp (P1 ∪ [[B1]] ∪ [[∅]] ∪ P2 ∪ [[B2 ∪ {u}]] ∪ {{v} | v ∈ V − {u}})

holds. As [[∅]] can be ignored, one can see that the act of emptying B1 and adding
it to the partial solution will not otherwise affect the proof. The proof of bp in
Case 3 is trivial, as the modifications made in this step can simply be undone
by applying the following steps:

P1 ∪ [[B1]] ∪ [[∅]] ∪ (P2 ∪ [[B2]]) ∪ [[{u}]] ∪ {{v} | v ∈ V − {u}}
= P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{u}} ∪ {{v} | v ∈ V − {u}} by [[·]]−def
= P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V} by u ∈ V

Now, one only needs to show that the remaining additional conjuncts hold. This
can again be shown automatically using not-in and the fact that inv1 P1 P2

B1 B2 V held before the modifications. Therefore, inv1 is preserved in all three
cases.

To prove the approximation factor, we proceed as in [4] and establish suitable
lower bounds. The first lower bound

Lemma 11. bp P −→ |L| ≤ |P|

holds because a bin can only contain at most one large object, and every large
object needs to be in the solution. To prove this in Isabelle, we first make the
observation that for every large object there exists a bin in P in which it is
contained. Therefore, we may obtain a function f that returns this bin for every
u ∈ L. Using the fact that any bin can hold at most one large object, we can
show that this function has to be injective, as every large object must map to a
unique bin. Hence, the number of large objects is equal to the number of bins f
maps to. Moreover, the image of f has to be a subset of P. Thus, the number of
large objects has to be a lower bound on the number of bins in P.

As it turns out, the algorithm will ensure that there is always at least one
large object in a bin for the first partial solution as long as large objects are
available. This means we can assume that:

V ∩ L ̸= ∅ −→ (∀B∈P1 ∪ [[B1]]. B ∩ L ̸= ∅)

Therefore, we can use the previous lower bound to show the following:

13

Lemma 12. bp P ∧ inv1 P1 P2 B1 B2 V ∧ (∀B∈P1 ∪ [[B1]]. B ∩ L ̸= ∅) −→
|P1 ∪ [[B1]] ∪ {{v} | v ∈ V ∩ L}| ≤ |P|

Another easy lower bound is this one:
Lemma 13. bp P −→ (

∑
u∈U wu) ≤ c ∗ |P|

The next lower bound arises from the fact that an object is only ever put
into B2, and therefore P2, if it would have caused B1 to overflow. As a result of
this, we can define a bijective function f that maps every bin of P1 to the object
in P2 ∪ [[B2]] that would have caused the bin to overflow. We define:
bij_exists :: ′a set set ⇒ ′a set ⇒ bool
bij_exists P V = (∃ f . bij_betw f P V ∧ (∀B∈P. c < W B + w (f B)))

From this, we can make the observation that the number of bins in P1 is a strict
lower bound on the number of bins of any correct bin packing P:
Lemma 14. bp P ∧ inv1 P1 P2 B1 B2 V ∧ bij_exists P1 (

∪
(P2 ∪ [[B2]]))

−→ |P1| + 1 ≤ |P|

Unlike the proof outlined in [4], we begin with a case distinction on P1. The
reasoning behind this is that if P1 is empty, the strict nature of the lower
bound cannot be shown from the calculation that Berghammer and Reuter
make. Therefore, we consider the case where P1 is empty separately. If P1 is
empty, our goal is to prove that 1 is a lower bound on the number of bins in P.
This follows from the fact that U is non-empty, and therefore any correct bin
packing must contain at least one bin. For the other case, we may now assume
that P1 is non-empty. In the following proof, we will need the final conjunct
of inv1, (P1 ∪ [[B1]]) ∩ (P2 ∪ [[B2]]) = ∅, which we can transform into disjoint:
P1 ∩ (P2 ∪ [[B2]]) = ∅. We also obtain the bijective function f and observe that,
as the object obtained from f for a bin B ∈ P1 caused B to exceed its capacity,
exceed: c < W (B) + w(f (B)) must hold. We can now perform the following
calculation:

c|P1| =
∑
B∈P1

c

<
∑
B∈P1

W (B) +
∑
B∈P1

w(f(B)) by P1 ̸= ∅ and exceed

=
∑
B∈P1

W (B) +
∑

B∈P2 ∪ [[B2]]

W (B) by f bijective

=
∑

B∈P1 ∪ P2 ∪ [[B2]]

W (B) by disjoint

≤
∑
u∈U

w(u) ≤ c|P | by inv1 and Lemma 13

Therefore |P1| < |P| and, by extension, |P1| + 1 ≤ |P|.
We only sketch the rest of the proof because it is almost identical to that in

[4]. First we need two extensions of inv1 to show the approximation ratio:

14

inv2 P1 P2 B1 B2 V =
(inv1 P1 P2 B1 B2 V ∧
(V ∩ L ̸= ∅ −→ (∀B∈P1 ∪ [[B1]]. B ∩ L ̸= ∅)) ∧
bij_exists P1 (

∪
(P2 ∪ [[B2]])) ∧ 2 ∗ |P2| ≤ |

∪
P2|)

inv3 P1 P2 B1 B2 V = (inv2 P1 P2 B1 B2 V ∧ B2 ⊆ S)

The motivation for the last conjunct in inv2 is the following lower bound:

inv1 P1 P2 B1 B2 V ∧ 2 ∗ |P2| ≤ |
∪

P2| ∧ bij_exists P1 (
∪

(P2 ∪ [[B2]])) −→
2 ∗ |P2 ∪ [[B2]]| ≤ |P1| + 1

The main lower bound lemma (Theorem 4.1 in [4]) is the following:

Lemma 15. V ∩ S = ∅ ∧ inv2 P1 P2 B1 B2 V ∧ bp P −→
|P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V}| ≤ 3 / 2 ∗ |P|

From this lower bound the postcondition of the algorithm follows easily under
the assumption that inv2 holds at the end of the loop. This in turn follows
because inv3 can be shown to be a loop invariant.

7 Conclusion

In the first application of theorem proving to approximation algorithms we have
verified three classical and one less well-known approximation algorithm for fun-
damental NP-complete problems, have corrected purported invariants from the
literature and could even strengthen the approximation ratio in one case. Al-
though we have demonstrated the benefits of formal verification of approxima-
tion algorithms, we have only scratched the surface of this rich theory. The
next step is to explore the subject more systematically. As a large fraction of
the theory of approximation algorithms is based on linear programming, this
is a promising and challenging direction to explore. Some linear programming
theory has been formalized in Isabelle already [5,11]. Approximation algorithms
can also be formulated as relational programs, and verified accordingly. This
approach was explored in [2], with some support from theorem provers, but has
yet to be fully formalized.

Acknowledgement Tobias Nipkow is supported by DFG grant NI 491/16-1.

References

1. Bansal, N., Khot, S.: Inapproximability of hypergraph vertex cover and appli-
cations to scheduling problems. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) Automata, Languages and Pro-
gramming, ICALP 2010, Part I. LNCS, vol. 6198, pp. 250–261. Springer (2010).
https://doi.org/10.1007/978-3-642-14165-2_22

15

https://doi.org/10.1007/978-3-642-14165-2_22

2. Berghammer, R., Höfner, P., Stucke, I.: Cardinality of relations and relational
approximation algorithms. Journal of Logical and Algebraic Methods in Program-
ming 85(2), 269–286 (2016)

3. Berghammer, R., Müller-Olm, M.: Formal development and verification of approx-
imation algorithms using auxiliary variables. In: Bruynooghe, M. (ed.) Logic Based
Program Synthesis and Transformation, LOPSTR 2003. LNCS, vol. 3018, pp. 59–
74. Springer (2003). https://doi.org/10.1007/978-3-540-25938-1_6

4. Berghammer, R., Reuter, F.: A linear approximation algorithm for bin packing with
absolute approximation factor 3/2. Sci. Comput. Program. 48(1), 67–80 (2003).
https://doi.org/10.1016/S0167-6423(03)00011-X

5. Bottesch, R., Haslbeck, M.W., Thiemann, R.: Verifying an incremental theory
solver for linear arithmetic in Isabelle/HOL. In: Herzig, A., Popescu, A. (eds.)
Frontiers of Combining Systems, FroCoS 2019. LNCS, vol. 11715, pp. 223–239.
Springer (2019). https://doi.org/10.1007/978-3-030-29007-8_13

6. Eßmann, R., Nipkow, T., Robillard, S.: Verified approximation algorithms. Archive
of Formal Proofs (Jan 2020), http://isa-afp.org/entries/Approximation_
Algorithms.html, Formal proof development

7. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

8. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
9. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014),

http://concrete-semantics.org
10. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer (2002)
11. Parsert, J., Kaliszyk, C.: Linear programming. Archive of Formal Proofs (Aug

2019), http://isa-afp.org/entries/Linear_Programming.html, Formal proof
development

12. Vazirani, V.: Approximation Algorithms. Springer (2003)
13. Wei, V.: A lower bound for the stability number of a simple graph. Technical

Memorandum 81-11217-9, Bell Laboratories (1981)

16

https://doi.org/10.1007/978-3-540-25938-1_6
https://doi.org/10.1016/S0167-6423(03)00011-X
https://doi.org/10.1007/978-3-030-29007-8_13
http://isa-afp.org/entries/Approximation_Algorithms.html
http://isa-afp.org/entries/Approximation_Algorithms.html
http://concrete-semantics.org
http://isa-afp.org/entries/Linear_Programming.html

	Verified Approximation Algorithms

