
Unified Decision Procedures for
Regular Expression Equivalence

Tobias Nipkow and Dmitriy Traytel

Fakultät für Informatik, Technische Universität München, Germany

Abstract. We formalize a unified framework for verified decision procedures for
regular expression equivalence. Five recently published formalizations of such
decision procedures (three based on derivatives, two on marked regular expres-
sions) can be obtained as instances of the framework. We discover that the two
approaches based on marked regular expressions, which were previously thought
to be the same, are different, and we prove a quotient relation between the au-
tomata produced by them. The common framework makes it possible to compare
the performance of the different decision procedures in a meaningful way.

1 Introduction

Equivalence of regular expressions is a perennial topic in computer science. Recently
it has spawned a number of formalized and verified decision procedures for this task in
interactive theorem provers [3, 6, 10, 19, 21]. Except for the formalization by Braibant
and Pous [6], all these decision procedures operate directly on variations of regular
expressions. Although they (implicitly) build automata, the states of the automata are
labeled with regular expressions, and there is no global transition table but the next-
state function is computable from the regular expressions. The motivation for working
with regular expressions is simplicity: regular expressions are a free datatype which
proof assistants and their users love because it means induction, recursion and equa-
tional reasoning—the core competence of proof assistants and functional programming
languages. Yet all these decision procedures based on regular expressions look very
different. Of course, the next-state functions all differ, but so do the actual decision pro-
cedures and their correctness, completeness and termination proofs. The contributions
of our paper are the following:

– A unified framework (Sect. 3) that we instantiate with all the above approaches
(Sects. 4 and 5). The framework is a simple reflexive transitive closure computation
that enumerates the states of a product automaton.

– Proofs of correctness, completeness and termination that are performed once and
for all for the framework based on a few properties of the next-state function.

– A new perspective on partial derivatives that recasts them as Brzozowski derivatives
followed by some rewriting (Sect. 4).

– The discovery that Asperti’s algorithm is not the one by McNaughton-Yamada [20],
as stated by Asperti [3], but a dual construction which apparently had not been
considered in the literature and which produces smaller automata (Sect. 5).

– An empirical comparison of the performance of the different approaches (Sect. 6).

The discussion of related work is distributed over the relevant sections of the paper.

2 Preliminaries

Isabelle/HOL is based on Church’s simple type theory (see [22, Part I] for a recent
introduction). Types τ are built from type variables α, β, etc. via function types, other
type constructors are written postfix. The notation t :: τ means that term t has type τ.
Types αset and α list are the types of sets and lists of elements of type α. They come
with the following vocabulary: function set (conversion from lists to sets), [] (empty
list), # (list constructor), @ (append), hd (head), tl (tail) and map.

Recursive functions over datatypes are executable, and Isabelle can generate from
them code in functional languages [15]. This includes functions on finite sets [14].
Unless stated otherwise all functions in this paper are executable.

Locales [4] are Isabelle’s tool for modelling parameterized systems. A locale fixes
parameters and states assumptions about them:

locale A = fixes x1 and . . . and xn assumes n1 : P1 x and . . . and nm : Pm x

In the context of the locale A, we can define constants that depend on the parameters xi
and prove properties about those constants using the assumptions Pi (accessed under the
name ni). Parameters can be instantiated: interpretation J: A where x1 = t1 . . . xn = tn.
The command issues proof obligations Pi t (that the user must discharge) and exports
constants and theorems from the locale with xi instantiated to ti. Multiple interpretations
of the same locale are possible; the prefix “J.” disambiguates different instances.

Regular expressions are defined as a recursive datatype:

datatype αrexp = 0 | 1 | A α | αrexp + αrexp | αrexp · αrexp | (αrexp)∗

with the usual (non-executable) semantics L :: αrexp→ α lang, where α lang is short
for (α list)set. In concrete regular expressions, we sometimes omit the constructor A
for readability. The recursive function nullable :: αrexp→ bool satisfies nullable r←→
[] ∈ L r. The functions Σ :: αrexp→ αset and atoms :: αrexp→ α list compute the
set and list of atoms (the arguments of constructor A) in a regular expression. The
(non-executable) left quotient of a language L :: α lang w.r.t. some a :: α is defined by
D a L = {w | a # w ∈ L}. The extension of D from single symbols to words w :: α list
can be expressed as fold D w where fold :: (α→ β→ β)→ α list→ β→ β.

3 Regular Expression Equivalence Framework

Regular expression (language) equivalence is usually reduced to (language) equiva-
lence of automata. In principle our framework does the same, except that we construct
the automata on the fly and replace the traditional transition table by computations on
regular-expression-like objects. We start by relating regular expressions and automata.

Left quotients of a regular language L can be understood as states of a deterministic
automaton ML with the initial state L, the transition function D , and the accepting
states being those languages K for which [] ∈ K holds. This automaton (restricted to
reachable states) is finite and minimal by the Myhill-Nerode theorem.1 The following
locale captures this left-quotient-based view of an automaton:

1 Note that the Myhill-Nerode relation≈L can be defined as v≈L w←→ foldD v L = foldD w L.
The quotient of ML by this relation is isomorphic to ML; hence ML is minimal.

locale rexpDA =
fixes ι :: αrexp→σ and L ::σ→ α lang and δ :: α→σ→σ and o ::σ→ bool
assumes ιL: L(ι r) = L r and δL: L(δ a s) = D a (L s) and oL: o s←→ [] ∈ L s

The parameters ι and L formalize what “regular-expression-like” means: ι r embeds the
regular expression r into a state of type σ, whereas L gives elements of σ a language
semantics, which coincides with the language semantics of regular expressions by the
assumption ιL. The function δ is the symbolic computation of left quotients on σ ac-
cording to δL. It can be regarded as the transition function of an automaton with states
in σ and the initial state ι r. Accepting states of this automaton are given by o.

Let us develop and verify some algorithms in the context of rexpDA. For a start,
regular expression matching is easy to define

match r w = o (fold δ w (ι r))

and prove correct: match r w←→ w ∈L r.
Now we tackle the equivalence checker. We follow the well-known product automa-

ton construction where language equivalence means o s1←→ o s2 for all states (s1, s2)
of the product automaton. Alternatively, one can view this procedure as the construction
of a bisimulation relation between two automata: language equivalence and existence of
a bisimulation coincide for deterministic automata [24]. The set of reachable states of
an automaton can be obtained as the reflexive transitive closure of the start state under
λ p. map (λa. δ a p) as where as :: α list is the alphabet.

We define a reflexive transitive closure operation

rtc :: (α→ bool)→ (α→ α list)→ α→ (α list×αset)option

where type αoption is the datatype None | Some α. It is used to encode whether the
closure is finite (Some is returned) or infinite (None is returned). The function rtc is
defined using a while combinator and is executable (provided its arguments being exe-
cutable); the result Some corresponds to a terminating computation [19]. The definition
can be found in Isabelle/HOL’s library theory While_�Combinator under its full name
rtrancl_�while. The parameters and result of rtc p next start have the following meaning:
Predicate p is a test that stops the closure computation if an element not satisfying p is
found; this is merely an optimization. Function next maps an element to a list of succes-
sors. Of course start is the start element. A result Some (ws, Z) means that the closure
computation terminated with a worklist ws and a set of reachable elements Z. If ws is
empty, Z is the set of all elements reachable from start; otherwise, the computation was
stopped because an element not satisfying p was found. More precisely, we proved

rtc p next start = Some (ws, Z) =⇒
if ws = [] then Z = R ∧ (∀z ∈ Z. p z) else ¬p (hd ws) ∧ hd ws ∈ R (1)

where R = {(x, y) | y ∈ set (next x)}∗ “ {start} and “ is infix relation application:
r “ {x}= {y | (x, y) ∈ r}.

The state space of the product automaton is computed as follows:

closure :: α list→ σ×σ→ ((σ×σ) list× (σ×σ)set)option
closure as = rtc (λ(s, t). o s←→ o t) (λ(s, t). map (λa. (δ a s, δ a t)) as)

The predicate λ(s, t). o s←→ o t stops the computation as soon as a contradiction to
language equality is found. The actual language equivalence checker merely needs to
test if the worklist is empty at the end:

eqv :: αrexp→ αrexp→ bool
eqv r s = case closure (atoms r @ atoms s) (ι r, ι s) of

Some ([], _)⇒ True
| _⇒ False

The alphabet given to closure is the concatenation of the atoms in the two expressions.
Soundness of eqv is an easy consequence of the following property, which in turn

follows from (1):

closure (atoms r @ atoms s) (ι r, ι s) = Some (ws, Z) =⇒
ws = []←→ L r = L s (2)

Theorem 1 (in rexpDA). eqv r s =⇒ L r = L s.

This is a partial correctness statement because it assumes that the call to closure in eqv
returns Some, i.e. terminates.

Termination of closure needs finiteness of the underlying automaton. Therefore we
extend rexpDA with an explicit assumption of finiteness:

locale rexpDFA = rexpDA+
assumes fin: finite {fold δ w (ι r) | w :: α list}

In this context the termination lemma for closure is an easy consequence of fin and the
following termination property of rtc:

finite ({(x, y) | y ∈ set (f x)}∗ “ {x}) =⇒ ∃y. rtc p f x = Some y

Lemma 2 (in rexpDFA). closure as (ι r, ι s) 6= None.

Together with (2) this implies completeness of eqv:

Theorem 3 (in rexpDFA). L r = L s =⇒ eqv r s.

This is the end of all considerations about equivalence of regular expressions. The rest
of the paper merely needs to focus on various methods for turning regular expressions
into finite automata in the sense of rexpDFA.

Note that ML defined above constitutes a first valid interpretation of rexpDFA. The
proof of fin requires the Myhill-Nerode theorem.

interpretation M : rexpDFA where
ι r = L r
δ a L = D a L
o L = [] ∈ L
L L = L

This interpretation is not executable because neither its next-step function D (being
based on infinite sets of words defined by a set comprehension) nor the equality on
σ= α lang (which is needed for the closure computation) is executable.

4 Derivatives

In 1964, Brzozowski [7] showed how to compute left quotients syntactically—as deriva-
tives of regular expressions. Derivatives have been rediscovered in proof assistants by
Krauss and Nipkow [19] and Coquand and Siles [10]. Our first executable instantiations
of the framework reuse infrastructure from earlier formalizations in Isabelle [19, 26].

A refinement of Brzozowski’s approach, partial derivatives, was introduced by An-
timirov [2] and formalized by Moreira et al. [21] in Coq and by Wu et al. [27] in
Isabelle. Partial derivatives operate on finite sets of regular expressions. They can be
viewed either as a nondeterministic automaton with regular expressions as states or as
the corresponding deterministic automaton obtained by the subset construction.

In the following, we integrate the two notions in our framework and show how
derivatives can be used to simulate partial derivatives without invoking sets explicitly.

4.1 Brzozowski’s Derivatives

Given a letter c and a regular expression r, the (Brzozowski) derivative der :: α →
αrexp→ αrexp of r w.r.t. a is defined by primitive recursion:

der _ 0 = 0
der _ 1 = 0
der a (A x) = if x = a then 1 else 0
der a (r + s) = der a r + der a s
der a (r · s) = if nullable r then (der a r · s) + der a s else der a r · s
der a (r∗) = der a r · r∗

It follows by induction on r that the language of the derivative der a r is exactly the
left quotient D a (L r). This property corresponds exactly to the assumption δL of the
locale rexpDA. Hence it suggests the following interpretation:

interpretation rexpDA where
ι r = r δ a r = der a r o r = nullable r L r = L r

Unfortunately, the sound equivalence checker that is produced by this interpretation is
useless in practice, because it will rarely terminate. For example, the automaton con-
structed from the regular expression a∗ is infinite, as all derivatives w.r.t. words an are
distinct: fold der a1 a∗ = 1 · a∗; fold der an+1 a∗ = 0 · a∗ + fold der an a∗.

Fortunately, Brzozowski showed that there are finitely many equivalence classes
of derivatives modulo associativity, commutativity and idempotence (ACI) of the +
constructor. We prove that the number of distinct derivatives of r modulo ACI is finite:
finite {[fold der w r]∼ | w ∈ (Σ r)∗} where [r]∼ = {s | r ∼ s} denotes the equivalence
class of r and the ACI equivalence ∼ is defined inductively as follows.

r + (s + t)∼ (r + s) + t r + s∼ s + r r + r ∼ r

r ∼ r r ∼ s
s∼ r

r ∼ s s∼ t
r ∼ t

r1 ∼ s1 r2 ∼ s2
r1 + r2 ∼ s1 + s2

r1 ∼ s1 r2 ∼ s2
r1 · r2 ∼ s1 · s2

r ∼ s
r∗ ∼ s∗

ACI-equivalent regular expressions r∼ s have the same atoms and same languages,
and their equivalence is preserved by the derivative: der b r ∼ der b s for all b ∈ Σr.

This enables the following interpretation that operates on ACI equivalence classes. We
obtain a first totally correct and complete equivalence checker D∼.eqv in Isabelle/HOL.

interpretation D∼ : rexpDFA where
ι r = [r]∼
δ a [r]∼ = [der a r]∼
o [r]∼ = nullable r
L [r]∼ = L r

[a∗ ·b]∼ [(0 ·a∗) ·b + 1]∼

[(1 ·a∗) ·b + 0]∼

[((0 ·a∗ + 1 ·a∗) ·b + 0) + 0]∼

[((0 ·a∗ + 0 ·a∗) ·b + 1) + 0]∼

[((0 ·a∗ + 0 ·a∗) ·b + 0) + 0]∼

a

b

a
b

a, b

b

a, b

a

a, b

Fig. 1: Derivative automaton modulo ACI for a∗ · b

Technically, the formalization defines a quotient type [18] of “regular expressions mod-
ulo ACI” to represent equivalence classes and uses Lifting and Transfer [17] to lift oper-
ations on regular expressions to operations on equivalence classes. The above presenta-
tion of definitions of the locale parameters by “pattern matching” on equivalence classes
resembles the code generated by Isabelle for quotients (a pseudo-constructor [14], [_]∼,
wraps a concrete representative r), rather than the actual definitions by Lifting.

Since the equivalence checker must compare equivalence classes, the code gener-
ation for quotients requires an executable equality (i.e. a decision procedure for ∼-
equivalence). We achieve this through an ACI normalization function 〈_〉 that maps a
regular expression r to a canonical representative of [r]∼ by sorting all summands w.r.t.
an arbitrary fixed linear order � while removing duplicates. The definition of 〈_〉 em-
ploys a smart (simplifying) constructor ⊕, whose equations are matched sequentially.

〈0〉 = 0
〈1〉 = 1
〈A a〉 = A a
〈r + s〉 = 〈r〉 ⊕ 〈s〉
〈r · s〉 = 〈r〉 · 〈s〉
〈r∗〉 = 〈r〉∗

(r + s)⊕ t = r ⊕ (s⊕ t)
r ⊕ (s + t) = if r = s then s + t

else if r � s then r + (s + t)
else s + (r ⊕ t)

r ⊕ s = if r = s then r
else if r � s then r + s else s + r

We obtain an executable decision procedure for ACI equivalence: r ∼ s←→ 〈r〉 = 〈s〉.
This makes D∼.eqv executable, yielding verified code in different functional program-
ming languages via Isabelle’s code generator. Yet, the performance of the generated
code is disappointing. Fig. 1 shows why: Derivations clutter concrete representatives
with duplicated summands. Further derivation steps perform the same computation re-
peatedly and hence become increasingly expensive. This bottleneck is avoided by taking
canonical ACI-normalized representatives as states yielding a second interpretation.

interpretation D : rexpDFA where
ι r = 〈r〉
δ a r = 〈der a r〉
o r = nullable r
L r = L r

a∗ · b 1 + (0 · a∗) · b

0 + (1 · a∗) · b

0 + (0 · a∗ + 1 · a∗) · b

0 + (1 + (0 · a∗) · b)

0 + (0 · a∗) · b

a

b

a

b

a, b

b

a, b

a

a, b

Fig. 2: ACI-normalized derivative automaton for a∗ · b

A few points are worth mentioning here: First, D does not use the quotient type—it
operates directly on canonical representatives and therefore can use structural equality
for comparison (rather than ∼). Second, the interpretations D∼ and D yield structurally
the same automata, although with different labels. Fig. 2 shows the automaton produced
by D for a∗ ·b. This observation—which enables us to reuse the technically involved
proof of D∼.fin to discharge D.fin—relies crucially on our normalization function 〈_〉
being idempotent and well-behaved w.r.t. derivatives:

Lemma 4. We have 〈〈r〉〉= 〈r〉 and 〈der b〈r〉〉= 〈der b r〉 for all b ∈ Σ r.

The automaton from Fig. 2 shows that the state labels still contain superfluous informa-
tion, notably in the form of 0s and 1s. A coarser relation than ∼-equivalence, denoted
≈, adresses this concern. We omit the straightforward inductive definition of ≈, which
cancels 0s and 1s where possible and takes the associativity of concatenation · into ac-
count. Coarseness ([r]∼ ⊆ [r]≈) together with D∼.fin implies finiteness of equivalence
classes of derivatives modulo ≈: finite {[fold der w r]≈ | w ∈ (Σ r)∗}.

As before, to avoid working with equivalence classes, we use a recursively de-
fined ≈-normalization function 〈〈_〉〉 similar to 〈_〉 (it corresponds to the norm func-
tion from the formalization by Krauss and Nipkow [19]). However, 〈〈_〉〉 (also ≈) is
not well-behaved w.r.t. derivatives: for example, 〈〈der a 〈〈((a + 1) · (a · a)) · b〉〉〉〉 6=
〈〈der a (((a + 1) · (a · a)) · b)〉〉. The normalization would need to take the distributiv-
ity of · over + into account to prevent this disequality, but even with this addition a
formal proof of well-behavedness seems difficult. Furthermore, our evaluation (Sect. 6)
suggests that not too much energy should be invested in finding this proof. Thus, the
following interpretation gives only a partial correctness result.

interpretation N : rexpDA where
ι r = 〈〈r〉〉
δ a r = 〈〈der a r〉〉
o r = nullable r
L r = L r

a∗ · b 1 0
b a, b

a

a, b

Fig. 3: Normalized derivative automaton for a∗ · b

In practice, we did not find an input for which N would construct an infinite au-
tomaton. For the example a∗ · b it even yields the minimal automaton shown in Fig. 3.

4.2 Partial Derivatives

Partial derivatives split certain +-constructors into sets of regular expressions, thus cap-
turing ACI equivalence directly in the data structure. The automaton construction for a
regular expression r starts with the singleton set {r}. More precisely, partial derivatives
pder :: α→ αrexp→ (αrexp)set are defined recursively as follows:

pder _ 0 = {}
pder _ 1 = {}
pder a (A x) = if x = a then {1} else {}
pder a (r + s) = pder a r ∪ pder a s
pder a (r · s) = if nullable r then (pder a r� s) ∪ pder a s else pder a r� s
pder a (r∗) = pder a r� r∗

Above, R� s is used as a shorthand notation for {r · s | r ∈ R}. The definition yields
the characteristic property of partial derivatives by induction on r:

D a (L r) =
⋃

s∈pder a r L s

Following this characteristic property, we can interpret the locale rexpDFA. The au-
tomaton constructed by P for our running example is shown in Fig. 4.

interpretation P: rexpDFA where
ι r = {r}
δ a R =

⋃
r∈R pder a r

o R = ∃r ∈ R. nullable r
L R =

⋃
r∈R L r

{a∗ · b}

{(1 · a∗) · b}

{1} {}
b a, b

a b

a

a, b

Fig. 4: Partial derivative automaton for a∗ · b

The assumptions of rexpDA (inherited by rexpDFA) are easy to discharge. Just as for
Brzozowski derivatives, only the proof of finiteness of the reachable state space P.fin
poses a challenge. We were able to reuse the proof by Wu et al. [27] who show finiteness
when proving one direction of the Myhill-Nerode theorem. Compared with the proof of
D.fin, the formal reasoning about partial derivatives appears to be more succinct.

There is a direct connection between pder and der that seems not to have been cov-
ered in the literature. It is best expressed in terms of a recursive function pset :: αrexp→
(αrexp)set that translates derivatives to partial derivatives: pset (der a r) = pder a r.

pset 0 = {} pset (r + s) = pset r ∪ pset s
pset 1 = {1} pset (r · s) = pset r� s
pset (A x) = {A x} pset (r∗) = {r∗}

A finite set R of regular expressions can be represented uniquely by a single regular
expression ∑R, a sum ordered w.r.t. �. Hence, we have ∑pset (der a r) = ∑pder a r,
meaning that we can devise a normalization function 〈〈〈r〉〉〉 = ∑pset r that allows us to
simulate partial derivatives while operating on plain regular expressions. Alternatively,
〈〈〈_〉〉〉 can be defined using smart constructors (with sequentially matched equations):

〈〈〈0〉〉〉 = 0
〈〈〈1〉〉〉 = 1
〈〈〈A a〉〉〉 = A a
〈〈〈r + s〉〉〉 = 〈〈〈r〉〉〉� 〈〈〈s〉〉〉
〈〈〈r · s〉〉〉 = 〈〈〈r〉〉〉� s
〈〈〈r∗〉〉〉 = r∗

0 � r = 0
(r + s)� t = (r � s)� (s � t)
r � s = s · t

0 � r = r
r � 0 = r
(r + s)� t = r � (s � t)
r � (s + t) = if r = s then s + t

else if r � s then r + (s + t)
else s + (r � t)

r � s = if r = s then r
else if r � s then r + s

else s + r

This definition allows to contrast the implicit quotienting performed by partial deriva-
tives with the qoutienting modulo ACI equivalence (∼). They turn out to be incompa-
rable: 〈〈〈_〉〉〉 does not simplify the second argument of concatenation · and the argument
of iteration ∗, but erases 0s and uses left distributivity.

Finally, we obtain a last derivative-based interpretation using the characteristic prop-
erty 〈〈〈der b r〉〉〉= ∑(pder b r) and P.fin to discharge the finiteness assumption fin.

interpretation PD : rexpDFA where
ι r = 〈〈〈r〉〉〉
δ a r = 〈〈〈der a r〉〉〉
o r = nullable r
L r = L r

Whenever P yields an automaton for r with states labeled with finite sets of regular
expressions Xi, PD constructs structurally the same automaton for r labeled with ∑ Xi.

5 Marked Regular Expressions

One of the oldest methods for converting a regular expression into an automaton is
based on the idea of identifying the states of the automaton with positions in the regular
expression. Both McNaughton and Yamada [20] and Glushkov [13] mark the atoms
in a regular expression with numbers to identify positions uniquely. In this section,
we formalize two recent reincarnations of this approach due to Fischer et al. [11] and
Asperti [3]. They are based on the realization that in a functional programming setting,
it is most convenient to represent positions in a regular expression by marking some of
its atoms. First we define an infrastructure for working with marked regular expressions.
Then we define and relate both reincarnations in terms of this infrastructure.

Marked regular expressions are formalized by the following type synonym (where
the value True denotes a marked atom)

α mrexp = (bool×α)rexp

We convert easily between rexp and mrexp with the help of map_rexp, the map function
on regular expressions:

strip = map_rexp snd
emtpy_�mrexp = map_rexp (λr. (False, r))

The language Lm :: αmrexp→ α lang of a marked regular expression is the set of words
that start at some marked atom:

Lm 0 = {}
Lm 1 = {}
Lm (A (m, a)) = if m then {[a]} else {}
Lm (r + s) = Lm r ∪Lm s
Lm (r · s) = (Lm r · L (strip s)) ∪Lm s
Lm (r∗) = Lm r · L (strip r)∗

The function final :: α mrexp→ bool tests if some atom at the “end” of a given
regular expression is marked:

final 0 = False
final 1 = False
final (A (m, a)) = m
final (r + s) = (final r ∨ final s)
final (r · s) = (final s ∨ nullable s ∧ final r)
final (r∗) = final r

Marks are moved around a regular expression by two operations. The function
read a r unmarks all atoms in r except a:

read :: α→ α mrexp→ α mrexp
read a = map_rexp (λ(m, x). (m ∧ a = x, x))

Its characteristic lemma is that it restricts Lm r to words whose head is a:

Lm (read a r) = {w ∈Lm r | w 6= [] ∧ hd w = a}

The function follow m r moves all marks in r to the “next” atom, much like an
ε-closure; the mark m is pushed in from the left:

follow :: bool→ α mrexp→ α mrexp
follow m 0 = 0
follow m 1 = 1
follow m (A (_, a)) = A (m, a)
follow m (r + s) = follow m r + follow m s
follow m (r · s) = follow m r · follow (final r ∨ m ∧ nullable r) s
follow m (r∗) = (follow (final r ∨ m) r)∗

The characteristic lemma about follow shows that the marks are moved forward, thereby
chopping off the first letter (in the generated language), and that the parameter m indi-
cates whether every “first” atom should be marked:

Lm (follow m r) = {tl w | w ∈Lm r} ∪ (if m then L (strip r) else {})−{[]}

5.1 Mark After Atom

In the work of McNaughton-Yamada-Glushkov, the mark indicates which atom has just
been read, i.e. the mark is located “after” the atom. Therefore the initial state is special
because nothing has been read yet. Thus we express the states of the automaton as a
pair of a boolean (True means that nothing has been read yet) and a marked regular
expression. The boolean can be viewed as a mark in front of the automaton. (Alterna-
tively, one could work with an explicit start symbol in front of the regular expression.)
We interpret the locale rexpDFA as follows:

interpretation A : rexpDFA where
ι r = (True, emtpy_�mrexp r)
δ a (m, r) = (False, read a (follow m r))
o (m, r) = (final r ∨ m ∧ nullable r)
L (m, r) = Lm(follow m r) ∪ (if o (m, r) then {[]} else {})

The definition of δ expresses that we first build the ε-closure starting from the marked
atoms (via follow) and then read the next atom. With the characteristic lemmas about
read and follow (and a few auxiliary lemmas), the locale assumptions are easily proved.
This yields our first version of automata based on marked regular expressions.

Finiteness of the reachable part of the state space is proved via the lemma

fold δ w (ι r) ∈ {True, False}×mrexps r

where mrexps :: αrexp→ (α mrexp)set maps a regular expression to the finite set of all
its marked variants, i.e. mrexps r = {r′ | strip r′ = r}; its actual recursive definition is
straightforward and omitted.

Now we take a closer look at the work of Fischer et al. [11], which inspired the
preceding formalization. They present a number of (not formally verified) matching
algorithms on marked regular expressions in Haskell that follow McNaughton-Yamada-
Glushkov. This is their basic transition function:

shift :: bool→ α mrexp→ α→ α mrexp
shift _ 0 _ = 0
shift _ 1 _ = 1
shift m (A (_, x)) c = A (m ∧ (x = c), x)
shift m (r + s) c = shift m r c + shift m s c
shift m (r · s) c = shift m r c · shift (final r ∨ m ∧ nullable r) s c
shift m (r∗) c = (shift (final r ∨ m) r c)∗

A simple induction proves that their shift is our δ:

shift m r x = read x (follow m r)

Thus we have verified their shift function. Fischer et al. optimize shift further, which is
still quadratic due to the calls of the recursive functions final and nullable. They simply
cache the values of final and nullable at all nodes of a regular expression by adding
additional fields to each constructor. We have verified this optimization step as well,
yielding another interpretation A2 (omitted here).

5.2 Mark Before Atom

Instead of imagining the mark to be after an atom, it can also be viewed to be in front of
it, i.e. it marks possible next atoms. This is somewhat dual to the McNaughton-Yamada-
Glushkov construction. It leads to the following interpretation of the rexpDA locale:

interpretation B : rexpDFA where
ι r = (follow True (emtpy_�mrexp r), nullable r)
δ a (r, m) = let r′ = read a r in (follow False r′, final r′)
o (r, m) = m
L (r, m) = Lm r ∪ (if m then {[]} else {})

The definition of δ expresses that we first read an atom and then build the ε-closure.
The assumptions of rexpDA and rexpDFA are proved easily just like in the previous
interpretation with marked regular expressions.

The interesting point is that this happens to be the algorithm formalized by As-
perti [3]. Although he says that he has formalized McNaughton-Yamada, he actually
formalized the dual algorithm. This is not easy to see because Asperti’s formalization
is considerably more involved than ours, with many auxiliary functions. Strictly speak-
ing, his algorithm is a variation of ours that produces the same automata. The complete
proof of this fact can be found elsewhere [16]. Because of the size of Asperti’s formal-
ization, there is not enough space here to give the detailed equivalence proof. However,
we can take a step towards his formulation and merge follow and read into one function
move :: α→ α mrexp→ bool→ α mrexp, the analogue of his homonymous function:

•(a∗ · b)

a∗ · (b•) a∗ · b

(a•)∗ · b

b

a, b

a

b

a

a, b

(•a)∗ · (•b)

(a∗ · b)• a∗ · b

b

a, b

a

a, b

Fig. 5: Marked regular expression automata (A left, B right) for a∗ · b

move _ 0 _ = 0
move _ 1 _ = 1
move c (A (_, x)) m = A (m, x)
move c (r + s) m = move c r m + move c s m
move c (r · s) m = move c r m · move c s (final1 r c ∨ m ∧ nullable r)
move c (r∗) m = (move c r (final1 r c ∨ m))∗

where final1 is an auxiliary recursive function (not shown here) with the characteristic
property that final1 r c= final (read c r). A simple induction proves that move combines
follow and read as in δ:

move c r m = follow m (read c r)

The function move has quadratic complexity for the same reason as shift. Unfortu-
nately, it cannot be made linear with the same ease as for shift. The problem is that we
need to cache the value of final1 r c in the previous step, before we know c. We solve this
by caching the set of all letters c that make final1 r c true. In the worst case, the whole al-
phabet must be stored in certain inner nodes. However, for an alphabet of fixed size this
guarantees linear time complexity. This optimization constitutes a last interpretation B2.

Even for a fixed alphabet, Asperti’s move has quadratic complexity when faced with
a tower of stars: each recursive call of move can trigger a call of a function eclose, which
has linear complexity. Asperti aimed for compact proofs, not maximal efficiency.

5.3 Comparison

The two constructions may look similar, but they do not produce isomorphic automata.
Considering our running example, we display the mark by a “•” before or after the atom.
The two resulting automata are shown in Fig. 5. There are special states that cannot
be denoted by marking atoms only: •r in A’s automaton is the completely unmarked
regular expression that is the initial state and r• in B’s automaton is a final state.

It turns out that the “before” automaton is a homomorphic image of the “after” au-
tomaton. To verify this we specify the homomorphism ϕ(m, r)= (follow m r, A.o (m, r))
and prove that it preserves initial states and commutes with the transition function:

ϕ(A.ι r) = B.ι r ϕ(A.δ a s) = B.δ a (ϕ s) ϕ(fold A.δ w s) = fold B.δ w (ϕ s)

A direct consequence is that Asperti’s “before” construction always generates automata
with at most as many states as the McNaughton-Yamada-Glushkov construction. For-
mally, in the context of locale rexpDA we have defined an executable computation of
the reachable state space {fold δ w (ι r) | w ∈ (set as)∗} of the automaton:

reachable as r = snd (the (rtc (λ_. True) (λ s. map (λa. δ a s) as) (ι r)))

where r is the initial regular expression, as is the alphabet, and the (Some x) = x.

Theorem 5. |B.reachable as r| ≤ |A.reachable as r| where |_| is the cardinality of a set.

In early drafts of this paper, we only conjectured the above statement and unsuccess-
fully tried to refute it with Isabelle’s Quickcheck facility [8]. Later, Helmut Seidl has
communicated an informal proof using the above homomorphism to us.

Let us abbreviate the statement of Thm. 5 to nb ≤ na. One may think that na is only
slightly larger than nb, but it seems that nb and na are more than a constant summand
apart: for a two-element alphabet Quickcheck could refute na ≤ nb+k even for k = 100.

6 Empirical Comparison

We compare the efficiency w.r.t. both matching and deciding equivalence of the Stan-
dard ML code generated from eight described interpretations:∼-normalized derivatives
(D), ≈-normalized derivatives (N), partial derivatives (P), derivatives simulating partial
derivatives (PD), mark “after” atom (A), mark “after” atom with caching (A2), mark
“before” atom (B), and mark “before” atom with caching (B2). The interpretation using
the quotient type for derivatives (D∼) is not in this list, as it is clearly superseded by
D. The results of the evaluation, performed on an Intel Core i7-2760QM machine with
8GB of RAM, are shown in Fig. 6. Solid lines depict the four derivative-based algo-
rithms. Dashed lines are used for the algorithms based on marked regular expressions.

The first two tests, MATCH-R and MATCH-L, measure the time required to match
the word an against the regular expression (a + 1)n · an—a standard benchmark also
used by Fischer et al. [11]. The difference between the two tests is the definition
of rn. MATCH-R defines it as the n-fold concatenation associated to the right: r4 =
r · (r · (r · r)), whereas MATCH-L associates to the left: r4 = ((r · r) · r) · r. In both
tests, marked regular expressions outperform derivatives by far. The normalization per-
formed by the derivative-based approaches (required to obtain a finite number of states
for the equivalence check) decelerates the computation of the next state. Marked regular
expressions benefit from a fast next state computation. The test MATCH-L exhibits the
quadratic nature of the unoptimized matchers A and B (their curves are almost identical
and therefore hard to distinguish in Fig. 6). In contrast, A2 and B2 perform equally well
in both tests, A2 being approximately 1.5 times faster due to lighter cache annotations.

The next test goes back to Antimirov [1]: We measure the time (with a timeout
of ten seconds) for proving the equivalence of a∗ and (a0 + . . .+ an−1) · (an)∗. Again
two tests, EQ-R and EQ-L, distinguish the associativity of concatenation in rn. Here,
the derivative-based equivalence checkers (except for D) perform better then the ones
based on marked regular expressions. In particular, both version of partial derivatives,
P and PD, outperform N—since this example was crafted by Antimirov to demonstrate
the strength of partial derivatives, this is not wholly unexpected. Comparing EQ-R and
EQ-L, the associativity barely influences the runtime.

Finally, to avoid bias towards a particular algorithm, we have devised the random-
ized test EQ-RND. There we measure the average time (with a timeout of ten seconds) to
prove the equivalence of r with itself for 100 randomly generated expressions with n in-
ner nodes (+, ·, or ∗). Proving r ≡ r is of course a trivial task, but our algorithms do not

0 2000 4000
0

2

4

n
Ti

m
e

(s
)

(MATCH-R)

0 2000 4000
0

2

4

n

Ti
m

e
(s

)

(MATCH-L)

0 200 400 600
0

2

4

6

8

n

Ti
m

e
(s

)

(EQ-R)

0 200 400 600
0

2

4

6

8

n

Ti
m

e
(s

)

(EQ-L)

0 200 400 600 800
0

2

4

n

Ti
m

e
(s

)

(EQ-RND)

D N P PD B B2 A A2

Fig. 6: Evaluation results

stop the exploration when the state of the product automaton is a pair of two equal states.
This optimization, which is a must for any practical algorithm, is the first step towards
the rewarding usage of bisimulation up to equivalence (or even up to congruence) [5].
Without any such optimization, the task of proving r ≡ r amounts to enumerating all
derivatives of r, which is exactly what we want to compare. To generate random reg-
ular expression we use the infrastructure of SpecCheck [25]—a Quickcheck clone for
Isabelle/ML. For computing the average, a timeout counts as 10 second (although the
actual computation would likely have taken longer)—an approximation that skews the
curves to converge to the margin of 10 seconds. We stopped measuring a method for
increasing n when the average approached 5 seconds.

The results of EQ-RND are summarized as follows: D�N� P,PD� A,A2,B,B2,
where X � Y means that Y is an order of magnitude faster than X. The algorithm
P is noticeably slower than PD—avoiding sets reduces the overhead. Among A, A2,
B, B2, Asperti’s unoptimized algorithm B performs best by a narrow margin. Regular
expressions where the caching overhead pays off are rare and therefore not visible in
the randomized test results. The same holds for expressions where B produces much
smaller automata than A (e.g. the counterexample to na ≤ nb +100 from Subsect. 5.3).

Our evaluation shows that A2 is the best choice for matching. For equivalence
checking, the winner is not as clear cut: B (especially when applied to normalized input
to avoid quadratic runtime without caching) and PD seem to be the best choices.

7 Extensions

Brzozowski’s derivatives are easily extendable to regular expressions intersection and
negation—indeed Brzozowski performed the extension right from the start [7]. The
number of such extended derivatives is still finite when quotiented modulo ACI.

We [26] have recently further extended derivatives to regular expressions extended
with projection, obtaining verified decision procedures for the equivalence of those ex-
tended regular expressions and for monadic second-order logics over finite words. The
closure computation and its correctness proof follow Krauss and Nipkow [19].

Extending partial derivatives with intersection and negation is more involved [9]. An
additional layer of sets must be used for intersections, i.e. the states of our automaton
would then be sets of sets of regular expressions. In Sect. 6, we have seen that already
one layer of sets incurs some overhead. Hence, the view on partial derivatives as deriva-
tives followed by some normalization is expected to be even more profitable for the
extension. The extension of partial derivatives with projection is an easy exercise.

It is unclear how to extend marked regular expressions to handle negation and inter-
section. The number of possible markings for a regular expression of alphabetic width n
is 2n. However, there exist regular expressions of alphabetic width n using intersection,
whose minimal automata have 22n

states [12].

8 Conclusion

We have shown that all the previously published verified decision procedures for equiv-
alence of regular expressions that operate on regular expressions directly can all be ex-
pressed as instances of a generic automaton-inspired framework. The correctness proofs
decompose into a generic part that is proved once and for all in the framework and a
few specific properties that need to be proved for each instance. The framework caters
for a meaningful comparison of the performance of the various instances. Marked reg-
ular expressions are superior on average but partial derivatives can outperform them in
specific cases. The Isabelle theories are available online [23].

Acknowledgment. We thank Andrea Asperti and Sebastian Fischer for commenting on fine points
of their work and Helmut Seidl for contributing an informal proof of Thm. 5. Jasmin Blanchette,
Andrei Popescu and three anonymous reviewers helped to improve the presentation through nu-
merous suggestions. The second author is supported by the doctorate program 1480 (PUMA) of
the Deutsche Forschungsgemeinschaft (DFG).

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automata constructions.
In: Mayr, E.W., Puech, C. (eds.) STACS 95. LNCS, vol. 900, pp. 455–466. Springer (1995)

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions.
Theor. Comput. Sci. 155(2), 291–319 (1996)

3. Asperti, A.: A compact proof of decidability for regular expression equivalence. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 283–298. Springer (2012)

4. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In: Borwein,
J.M., Farmer, W.M. (eds.) MKM 2006. LNCS, vol. 4108, pp. 31–43. Springer (2006)

5. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Giacobazzi, R., Cousot, R. (eds.) POPL 2013. pp. 457–468. ACM (2013)

6. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In: Kaufmann,
M., Paulson, L. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178. Springer (2010)

7. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
8. Bulwahn, L.: The new Quickcheck for Isabelle: Random, exhaustive and symbolic testing

under one roof. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 92–
108. Springer (2012)

9. Caron, P., Champarnaud, J.M., Mignot, L.: Partial derivatives of an extended regular expres-
sion. In: Dediu, A.H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp.
179–191. Springer (2011)

10. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in type the-
ory. In: Jouannaud, J.P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 119–134. Springer
(2011)

11. Fischer, S., Huch, F., Wilke, T.: A play on regular expressions: functional pearl. In: Hudak,
P., Weirich, S. (eds.) ICFP 2010. pp. 357–368. ACM (2010)

12. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expres-
sions. ACM Trans. Comput. Log. 13(1), 4:1–19 (2012)

13. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53 (1961)
14. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In:

Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–
115. Springer (2013)

15. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume,
M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer
(2010)

16. Haslbeck, M.: Verified Decision Procedures for the Equivalence of Regular Expressions.
B.Sc. thesis, Department of Informatics, Technische Universität München (2013)

17. Hufmann, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in Isa-
belle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146.
Springer (2013)

18. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Chu, W.C., Wong, W.E.,
Palakal, M.J., Hung, C.C. (eds.) SAC 2011. pp. 1639–1644. ACM (2011)

19. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation algebra. J.
Automated Reasoning 49, 95–106 (2012), published online March 2011

20. McNaughton, R., Yamada, H.: Regular expressions and finite state graphs for automata. IRE
Trans. on Electronic Comput EC-9, 38–47 (1960)

21. Moreira, N., Pereira, D., de Sousa, S.M.: Deciding regular expressions (in-)equivalence in
Coq. In: Kahl, W., Griffin, T. (eds.) RAMiCS 2012. LNCS, vol. 7560, pp. 98–113. Springer
(2012)

22. Nipkow, T., Klein, G.: Concrete Semantics. A Proof Assistant Approach. Springer (to ap-
pear), http://www.in.tum.de/~nipkow/Concrete-Semantics

23. Nipkow, T., Traytel, D.: Regular expression equivalence. Archive of Formal Proofs (2014),
http://afp.sf.net/entries/Regex_Equivalence.shtml, Formal proof development

24. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer (1998)

25. Schaffroth, N.: A Specification-based Testing Tool for Isabelle’s ML Environment. B.Sc.
thesis, Department of Informatics, Technische Universität München (2013)

26. Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words based on derivatives
of regular expressions. In: Morrisett, G., Uustalu, T. (eds.) ICFP 2013. pp. 3–12 (2013)

27. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based on reg-
ular expressions. J. Automated Reasoning, 52, 451–480 (2014)

http://www.in.tum.de/~nipkow/Concrete-Semantics
http://afp.sf.net/entries/Regex_Equivalence.shtml

	Unified Decision Procedures for Regular Expression Equivalence
	1 Introduction
	2 Preliminaries
	3 Regular Expression Equivalence Framework
	4 Derivatives
	4.1 Brzozowski's Derivatives
	4.2 Partial Derivatives

	5 Marked Regular Expressions
	5.1 Mark After Atom
	5.2 Mark Before Atom
	5.3 Comparison

	6 Empirical Comparison
	7 Extensions
	8 Conclusion

