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Abstract

We present a novel compiled approach to Normalisation by Evaluation (NBE) for ML-like

languages. It supports efficient normalisation of open λ-terms with respect to β-reduction

and rewrite rules. We have implemented NBE and show both a detailed formal model of our

implementation and its verification in Isabelle. Finally we discuss how NBE is turned into a

proof rule in Isabelle.

1 Introduction

Symbolic normalisation of terms with respect to user provided rewrite rules is one

of the central tasks of any theorem prover. Several theorem provers (see Section 6)

provide especially efficient normalisers which have been used to great effect (Nipkow

et al., 2006; Gonthier, 2008) in carrying out massive computations during proofs.

Existing implementations perform normalisation of open terms either by compilation

to an abstract machine or by Normalisation by Evaluation, NBE for short. The idea

of NBE is to carry out the computations by translating into some underlying

functional implementation language, evaluating there and translating back. The key

contributions of this paper are:

1. A novel compiled approach to NBE that exploits the pattern matching already

available in most functional languages, while allowing the normalisation of

open λ-terms with respect to β-reduction and a set of (possibly higher-order)

rewrite rules.

2. A formal model and correctness proof1 of our approach in Isabelle/HOL

(Nipkow et al., 2002), as well as a formal proof that any output obtained, is

indeed a normal term.

� This is a revised and extended version of (Aehlig et al., 2008).
† Supported by DFG Grant Ni 491/10
1 Available online at afp.sf.net
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NBE has been available at the user-level since Isabelle 2007, both to obtain the

normal form t′ of some open term t, which is its main application, and as a proof

rule that yields the theorem t = t′.

We give some examples of simple symbolic computations that exhibit key

properties of the approach. For a start, we can evaluate symbolic terms. For example,

rev [a,b,c] (where rev reverses a list) yields [c,b,a]. Terms need not be of base

type. For example, the append function on lists, which is defined by recursion on

its first argument, can be partially evaluated: append [] yields λx. x. We can

also declare additional equations, which have been proved as lemmas, as evaluation

rules. For example, making (xs @ ys) @ zs = xs @ (ys @ zs) (where @ is the

infix syntax for append) an evaluation rule lets (xs @ [a,b]) @ [c,d] normalise

to xs @ [a,b,c,d]. As a similar example, declaring - (- x) = x as an evaluation

rule, the term (λx. - x) ^^ 5 (where ^^ is function iteration) reduces to the

unary -.

Isabelle also has a compilation-based evaluator for ground terms (Haftmann &

Nipkow, 2010). That evaluator suffices for the efficiency-critical applications cited

above (Nipkow et al., 2006; Gonthier, 2008) which employ reflection: the syntacti-

fication of formulas of the logic, yielding ground terms that are evaluated/decided

with the help of a decision procedure programmed and verified in the logic. Hence

we are prepared to accept reduced performance for open terms (Section 4).

Since our concrete implementation is part of the Isabelle theorem prover whose

system implementation language is ML, we choose ML as implementation language,

too; this allows us to carry out evaluation in the same system environment as

the theorem prover itself using runtime compiler invocation. Hence the stack of

needed system software is not increased. This architecture is a design choice, no

prerequisite: any language in the ML family, including Haskell, is suitable for

evaluation, and evaluation could also be carried out in an external process or on

a remote machine. For brevity, throughout the paper we refer to the underlying

implementation language as ML, though.

The guiding principle of our realisation of NBE is to off-load as much work as

possible onto ML – not just substitution but also pattern matching. Thus the word

“compiled” in the title refers to both the translation from the theorem prover’s

λ-calculus into ML and from ML to some byte or machine code.

2 Normalisation by evaluation in ML

Normalisation by Evaluation uses the evaluation mechanism of an underlying

implementation language to normalise terms, typically of the λ-calculus. By means of

an evaluation function [[·]]ξ , or, alternatively, by compiling and running the compiled

code, terms are embedded into this implementation language. In other words, we

now have a native function in the implementation language. Then, a function ↓,
which acts as an “inverse of the evaluation functional” (Berger & Schwichtenberg,

1991), serves to recover terms from the semantics. This process is also known as

“type-directed partial evaluation” (Danvy, 1996).
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Normalisation by Evaluation is best understood by assuming a semantics consist-

ing of a reduction relation → on terms, a denotational semantics [[.]] mapping terms

to some domain, and a function ↓ in the other direction, all enjoying the following

two properties.

• Soundness: if r → s then [[r]]ξ = [[s]]ξ , for any valuation ξ.

• Reproduction: there is a special valuation ↑ such that for any term r in normal

form with respect to → we have ↓ [[r]]↑ = r.

These properties ensure that ↓ [[r]]↑ actually yields a normal form of r if it exists.

Indeed, let r →∗ s with s normal; then ↓ [[r]]↑ =↓ [[s]]↑ = s.

2.1 λ-calculus in ML

We implement untyped normalisation by evaluation (Aehlig & Joachimski, 2004) in

ML. To do so, we need to construct a model of the untyped λ-calculus, i.e. a data

type containing its own function space. Moreover, in order to make the reproduction

property possible, our model ought to include some syntactical elements in it like

constructors for free variables of our term language. Fortunately, ML allows data

types containing their own function space. So we can simply define a universal type

Univ like the following:

datatype Univ =

Const of string * Univ list

| Var of vname * Univ list

| Clo of (Univ list -> Univ) * Univ list * int

Here vname is the type of variable names uniquely identifying free variables. We do

not make any assumptions about this type, besides that we efficiently can check for

equality and obtain new elements. In our implementation, we use int, but this is

mere convenience, not a necessity of the method.

Note how the constructors of the data type allow to distinguish between an

element of Univ that is a function and one that is not. In type-directed partial

evaluation such a tagging is not needed, as the type of the argument already tells

what to expect. On the other hand, this need of anticipating the type of arguments

restricts the implementation to a typing discipline that can easily be embedded into

the simple types. Our untyped approach is flexible enough to work with any form

of rewrite system, including polymorphically typed ones.

The data type Univ represents normal lambda terms. So, we have a constructor

for variables and a constructor for functions, but we do not have a constructor for

application. Instead, we have a function apply: Univ -> Univ -> Univ discussed

below.

Const serves to embed constructors of data types of the underlying theory; they

are identified by the string argument. Normal forms can have the shape C t1 . . . tk of

a constructor C applied to several (normal) arguments. Therefore, we allow Const

to come with a list of arguments, for convenience of the implementation in reverse

order. In a similar manner, the constructor Var is used to represent expressions of

the form x t1 . . . tk with x, a variable.
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The constructor Clo represents partially applied functions. More precisely, “Clo

(f, [ak ,. . . ,a1], n)” represents the (n + k)-ary function f applied to a1, . . . , ak . This

expression needs another n argument before f can be evaluated. In the case of the

pure λ-calculus, n would always be 1 and f would be a value obtained by using

(Standard) ML’s function abstraction “fn x => . . . ”. Of course, ML’s understanding

of the function space is bigger than just the functions that can be obtained by

evaluating a term in our language. For example, recursion can be used to construct

representations for infinite terms. Nevertheless our modelling is faithful, as we only

need that Univ contains enough elements, not that it be in one-to-one correspondence

with our term calculus. During our normalisation process, only functions that can

be named by a term will occur as arguments to Clo.

As mentioned, application is realised by an ML-function apply. With the discussed

semantics in mind, it is easy to construct such a function: in the cases that C t1 . . . tk
or x t1 . . . tk is applied to a value s, we just add it to the list. In the case of a partially

applied function applied to some value s we either, in case more than one argument

is still needed, collect this argument or, in case this was the last argument needed,

we apply the function to its arguments.

fun apply (Clo (f, xs, 1)) x = f (x :: xs)

| apply (Clo (f, xs, n)) x = Clo (f, x :: xs, n - 1)

| apply (Const (name, args)) x = Const (name, x :: args)

| apply (Var (name, args)) x = Var (name, x :: args)

It should be noted that the first case in the above definition is the one that triggers

the actual work: compiled versions of the functions of the theory are called. As

discussed above, our semantic universe Univ allows only normal values. Therefore,

this call carries out all the normalisation work.

2.2 Translation of functions

As an example, consider the function append on lists as defined in Isabelle/HOL

fun append :: "’a list => ’a list => ’a list" where

"append Nil bs = bs" |

"append (Cons a as) bs = Cons a (append as bs)"

and assume “append (append as bs) cs = append as (append bs cs)” has

been proved, which is associativity of append. Compiling all these equations yields

the following ML code:

fun append [v_cs, Const ("append", [v_bs, v_as])] =

append [append [v_cs, v_bs], v_as]

| append [v_bs, Const ("Cons", [v_as, v_a])] =

Const ("Cons", [append [v_bs, v_as], v_a])

| append [v_bs, Const ("Nil", [])] =

v_bs

| append [v_a, v_b] =

Const ("append", [v_a, v_b])
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The second and third clauses of the function definition are in one-to-one corre-

spondence with the definition of the function append in the theory; the first clause

represents associativity. The arguments, both on the left and right side, are in reverse

order; this is in accordance with our semantics that fa1 . . . an is implemented as “f

[an,. . . , a1]”.

The last clause is a default clause fulfilling the need that the ML pattern matching

covers all arguments that will ever occur. But our equations, in general, do not cover

all cases. The constructor Var for variables is an example for a possible argument

usually not covered by any rewrite rule. In this situation where we have all arguments

for a function but no rewrite rule is applicable, no redex was generated by the last

application—and neither will be by applying this expression to further arguments,

as we have already exhausted the arity of the function. Therefore, we can use the

append function as a constructor. Using (the names of) our compiled functions as

additional constructors in our universal data type is a necessity of normalising open

terms. In the presence of variables not every term reduces to one built up from only

canonical constructors; instead, we might obtain normal forms with functions like

append. Using them as additional constructors is the obvious way to represent these

normal forms in our universal semantics.

Keeping this reproduction case in mind, we can understand the first clause. If the

first argument is of the form append, in which case it cannot further be simplified,

we can use associativity. Note that we are actually calling the append function,

instead of using a constructor; in this way we ensure to produce a normal result.

2.3 Translating back

As discussed, values of type Univ represent normal terms. Therefore, we can easily

implement the ↓-function which will be called term in our implementation. The

function term returns a normal term representing a given element of Univ. Its

definition is as follows:

term (Const (cnm, [vn,...,v1])) = c (term(v1)) ... (term(vn))

term (Var (vnm, [vn,...,v1])) = x (term(v1)) ... (term(vn))

term (Clo args) = λx. term(apply (Clo args) x)

In the Const/Var case, c/x is the constant/variable named by cnm/vnm. Keep in

mind that arguments are in reverse order in the implementation. In the Clo case

we carry out an eta expansion: the closure denotes a function that needs another

argument, which we give it in the form of a fresh variable x. This application to

the fresh x is performed via the function apply discussed above. In particular,

this application might trigger a redex and therefore cause more computation to be

carried out. For example, as normal form of “append Nil” we obtain—without

adding any further equations!—the correct function “λu. u”.

When reading the term equations, beware that on the right-hand side we find

two kinds of applications, both represented by juxtaposition: that of the term

language and that of the implementation language ML. Our formal model will

clearly distinguish the two.
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It should be noted that the definition of term follows the structure of normal

forms. Expressions of the shape x t1 . . . tk and λx.t are normal if t, t1, . . . , tk are. This

idea can be used to formally show that our algorithm only outputs normal terms

(see Section 3.6).

Compared to the expressiveness of the underlying term language in Isabelle, our

universal data type is quite simple. This is due to the fact that we consider an

untyped term-rewriting mechanism. This simplicity, however, comes at a price: we

have to translate back and forth between a typed and an untyped world. Forgetting

the types to get to the untyped rewrite structure is, essentially, an easy task, even

though some care has to be taken to ensure that the more advanced Isabelle features

like type classes and overloading are compiled away correctly and the term to be

normalised obeys the standard Hindley-Milner type discipline. More details of this

transformation into standard typing discipline are described in Section 4.

From terms following this standard typing discipline the types are thrown away

and the untyped normal form is computed, using the mechanism described earlier.

Afterwards, the full type annotations are reconstructed. To this end, the types of

all free variables have been stored before normalisation; the most general types of

the constants can be uniquely rediscovered from their names. The type of the whole

expression is kept as well, given that the Isabelle object language enjoys subject

reduction. Standard type inference will obtain the most general type annotations for

all sub-terms such that all these constraints are met. Since we are in a simply-typed

setting without a let-construct, type inference is a linear-time problem.

In most cases, these type reconstructions are unique, as follows from the structure

of normal terms in the simply-typed lambda calculus. However, in the presence of

polymorphic constants, the most general type could be more general than intended.

For example, let f be a polymorphic constant of type “(’a => ’a) => bool”, say

without any rewrite rule. Then the untyped normal form of “f (λu::bool. u)”

would be “f (λu. u)” with most general type annotations “f (λu::’a. u)”. To

avoid such widening of types only those equations will be considered as being proved

by normalisation where the typing of the result is completely determined, i.e. those

equations where the most general type for the result does not introduce any new

type variables. It should be noted that this, in particular, is always the case if an

expression evaluates to True.

3 Model and verification

This section models the previous section in Isabelle/HOL and proves partial

correctness of the ML level with respect to rewriting on the term level. In other

words, we will show that, if NBE returns an output t′ to an input t, then t = t′

could have also be obtained by term rewriting with equations that are consequences

of the theory. Moreover, t′ will be in β-normal form and none of the term rewriting

rules will be applicable.

We do not attempt to handle questions of termination or uniqueness of normal

forms. This would hardly be possible anyway, as arbitrary proven equations may

be added as rewrite rules. Given this modest goal of only showing soundness,
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which however is enough to ensure conservativity of our extension of the theorem

prover, we over-approximate the operational semantics of ML. That is, every

reduction ML can make is also a possible reduction our model of ML can make.

Conversely, our ML model is non-deterministic with respect to both the choice

among the applicable clauses of a compiled function and the order in which to

evaluate functions and arguments—any evaluation strategy is fine, even non-left-

linear equations are permitted in function definitions. This over-approximation

shows that partial correctness of our implementation is quite independent of details

of the implementation language. In particular, we could have chosen any functional

language, including lazy ones like Haskell.

In Section 2, it was explained that Normalisation by Evaluation is best understood

in terms of “soundness of the semantics” (i.e. the semantics identifies enough terms)

and “reproduction” (i.e. normal terms can be read off from the semantics). For

showing partial correctness, however, the task is slightly different. First of all, we

cannot really guarantee that our semantics identifies enough terms; there might be

equalities that hold in the Isabelle theory under consideration that are not expressed

as rewrite rules. Fortunately, this is not a problem. A failure of this property can

only lead to two terms that are equal in the theory, but still have different normal

forms. The lack of these properties requires us to show a slightly stronger form

of the reproduction property. We need to show for an arbitrary term r that ↓ [[r]]↑
is, if defined, a term that our theory equates with r. To show this property, we

give an operational semantics of our implementation language ML and assign each

computation state during the reduction of terms a “denoted term”. Then we just

have to show that each step our ML model makes either does not change the

denoted term, or transforms it to a term of which our theory shows that it is equal.

3.1 Basic notation

HOL conforms largely to everyday mathematical notation. This section introduces

some non-standard notation and a few basic data types with their primitive

operations.

The types of truth values and natural numbers are called bool and nat. The space

of total functions is denoted by ⇒. The notation t :: τ means that term t has type τ.

Sets over type α, type α set, follow the usual mathematical convention.

Lists over type α, type α list, come with the empty list [], the infix constructor ·,
the infix @ that appends two lists, and the standard functions map and rev.

3.2 Terms

We model bound variables by de Bruijn indices (Bruijn, 1972) and assume familiarity

with this device, and in particular the usual lifting and substitution operations. Below

we will not spell those out in detail but merely describe them informally—the details

are straightforward. Because variables are de Bruijn indices, i.e. natural numbers,

the types vname and ml-vname used below are merely abbreviations for nat. Type

cname on the other hand is an arbitrary type of constant names,for example strings.
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ML terms are modelled as a recursive data type:

ml = CML cname

| VML ml-vname

| AML ml (ml list)

| LamML ml

| CU cname (ml list)

| V U vname (ml list)

| Clo ml (ml list) nat

| apply ml ml

The default type of variables u and v shall be ml.

The constructors come in three groups:

• The λ-calculus underlying ML is represented by CML, VML, AML and LamML.

Note that application AML applies an ML terms to a list of ML terms to cover

both ordinary application (via singleton lists) and to model the fact that our

compiled functions take lists as arguments. Constructor LamML binds VML.
• Terms of the data type Univ (Section 2) are encoded by the constructors CU ,

V U and Clo. Note that the first argument of Clo is not of function type

because type ml represents ML terms, not values.
• Constructor apply represents the ML function apply (Section 2).

Note that this does not model all of ML but just the fraction we need to express

computations on elements of type Univ, i.e. encoded terms. The fact that the

constructors of Univ and apply are also constructors of ml rather than encoded via

CML is an optimisation; among other things, it directly expresses their type.

Capture-avoiding substitution substML σ u, where σ :: nat ⇒ ml, replaces VML i

by σ i in u. Notation u[v/i ] is a special case of substML σ u where σ replaces VML

i by v and decreases all ML variables > i by 1. Lifting the free ML variables �
i is written liftML i v. Predicate closedML checks if an ML value has no free ML

variables (� a given de Bruijn index).

The term language of the logical level is an ordinary λ-calculus, again modeled as

a recursive data type:

tm = C cname | V vname | tm • tm | Λ tm | term ml

The default type of variables r, s and t shall be tm.

This is the standard formalisation of λ-terms (using de Bruijn), but augmented

with term. It models the function term from Section 2. The subset of terms not

containing term is called pure.

We abbreviate (. . .(t • t1) • . . .) • tn by t •• [t1,. . .,tn]. We have the usual lifting and

substitution functions for term variables. Capture-avoiding substitution subst σ s,

where σ :: nat ⇒ tm, replaces V i by σ i in s and is only defined for pure terms. The

special form s[t/i ] is defined in analogy with u[v/i ] above, only for term variables.

Lifting the free term variables � i is written lift i and applies both to terms (where

V is lifted) and ML values (where V U is lifted).

In order to relate the encoding of terms in ML back to terms we define an

auxiliary function kernel :: ml ⇒ tm that maps closed ML terms to λ-terms. For
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succinctness kernel is written as a postfix !; map kernel vs is abbreviated to vs!. Note

that postfix binds tighter than prefix, i.e. f v! is f (v!).

(CML nm)! = C nm

(AML v vs)! = v! •• (rev vs)!

(LamML v )! = Λ ((lift 0 v )[V U 0 []/0 ])!

(CU nm vs)! = C nm •• (rev vs)!

(V U x vs)! = V x •• (rev vs)!

(Clo f vs n)! = f ! •• (rev vs)!

(apply v w )! = v! • w!

The argument lists vs need to be reversed because, as explained in Section 2, the

representation of terms on the ML level reverses argument lists to allow apply to

add arguments to the front of the list.

The case of LamML warrants a bit of explanation. We lift all syntactical variables

and substitute V U 0 [] for the 0’th ML-variable. So, the lifting and the substitution

actually do not interfere. Applying the kernel to the obtained expression will

eventually transform V U 0 into V 0. The latter is bound by the Lam while all

other syntactical variables are shifted out of the way.

The kernel of a tm, also written t!, replaces all sub-terms term v of t by v!.

Note that ! is not structurally recursive in the LamML case. Hence, it is not

obvious to Isabelle that ! is total, in contrast to all of our other functions. To allow

its definition (Krauss, 2006) we have shown that the (suitably defined) size of the

argument decreases in each recursive call of !. In the LamML case this is justified

by proving that both lifting and substitution of V U i [] for VML i do not change

the size of an ML term.

3.3 Reduction

We introduce two reduction relations: → on pure terms, the usual λ-calculus

reductions, and ⇒ on ML terms, which models evaluation in functional languages.

3.3.1 Reduction of pure terms

The reduction relation→ on pure terms is defined by β-reduction: Λ t • s → t[s/0 ],

η-expansion: t → Λ (lift 0 t • V 0 ), rewriting:

(nm , ts , t) ∈ R

C nm •• map (subst σ) ts → subst σ t

and context rules:

t → t ′

Λ t → Λ t ′
s → s ′

s • t → s ′ • t

t → t ′

s • t → s • t ′

Note that R :: (cname × tm list × tm) set is a global constant that models a (fixed)

set of rewrite rules. A triple (f , ts , t) models the rewrite rule C f •• ts → t .
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3.3.2 Reduction of ML terms

Just like → depends on R, ⇒ depends on a compiled version of the rules, called

compR :: (cname × ml list × ml ) set. A triple (f , vs , v ) represents the ML equation

with left-hand side AML (CML f ) vs and right-hand side v. The definition of compR

in terms of our compiler is given further below.

First we have β-reduction AML (LamML u) [v ] ⇒ u[v/0 ] and invocation of a

compiled function. The latter is modelled by two inference rules. One describes the

reductions induced by closed instances of compiled rewrite rules:

(nm , vs , v ) ∈ compR ∀ i . closedML 0 (σ i )

AML (CML nm) (map (substML σ) vs) ⇒ substML σ v

The other one describes the default clause in our implementation:

∀ i . closedML 0 (σ i ) vs = map VML [0 ..<arity nm]

vs ′ = map (substML σ) vs no-match-compR nm vs ′

AML (CML nm) vs ′ ⇒ substML σ (CU nm vs)

This rule requires some explanation. Function arity is a global table mapping each

constant to the number of arguments it expects. Notation [0 ..<k ] is short for

[0 ,. . .,k−1 ]. The default rule only applies if none of the other rules for the compiled

function match. This is formalised via an abbreviation

no-match-compR cs vs ≡
∀ (nm ′, ps , v )∈compR. cs = nm ′ −→ no-matchML ps vs

and a recursive function

no-matchML ps os ←→
(∃ i<min |os | |ps |.
∃ nm nm ′ vs vs ′.

(rev ps)[i ] = CU nm vs ∧
(rev os)[i ] = CU nm ′ vs ′ ∧ (nm = nm ′ −→ no-matchML vs vs ′))

Notation xs[i ] represents the i th element of list xs, and |xs | is the length of xs.

Function no-matchML checks if there is a witness for non-matching, i.e. a clash of

two distinct constructors (nm and nm ′).

The reduction rules for apply realize the defining equations for apply in Section 2:

apply (Clo f vs (Suc n)) v ⇒ Clo f (v ·vs) n (if 0 < n)

apply (Clo f vs (Suc 0 )) v ⇒ AML f (v ·vs)
apply (CU nm vs) v ⇒ CU nm (v ·vs)
apply (V U x vs) v ⇒ V U x (v ·vs)

Note that this is not a definition of apply, which is a constructor, but of ⇒. Similarly

for term below.

Finally we have all the context rules (not shown). They say that reduction can

occur anywhere, except under a LamML. Note that we do not fix lazy or eager

evaluation but allow any strategy. Thus we cover different target languages. The
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price we pay is that we can only show partial correctness because some evaluation

strategies may fail to terminate.

3.3.3 Reduction of function term

These reduction rules realize the description of term in Section 2:

term (CU nm vs) ⇒ C nm •• map term (rev vs)

term (V U x vs) ⇒ V x •• map term (rev vs)

term (Clo vf vs n) ⇒ Λ (term (apply (lift 0 (Clo vf vs n)) (V U 0 [])))

The last clause formalises η-expansion. By lifting, 0 becomes a fresh variable which

the closure object is applied to and which is bound by the new Λ.

In addition, we can reduce anywhere in a tm:

t ⇒ t ′

Λ t ⇒ Λ t ′
s ⇒ s ′

s • t ⇒ s ′ • t

t ⇒ t ′

s • t ⇒ s • t ′
v ⇒ v ′

term v ⇒ term v ′

It should be noted that the reduction ⇒ just defined is on type tm, whereas the

reduction ⇒ defined earlier was on type ml. We intentionally overloaded ⇒ because

the one on tm also models execution on the ML level, but returns a term.

3.4 Compilation

This section describes our compiler that takes a λ-calculus term and produces an

ML term. Its type is tm ⇒ (nat ⇒ ml ) ⇒ ml and it is defined for pure terms only:

compile (V x ) σ = σ x

compile (C nm) σ

= (if 0 < arity nm then Clo (CML nm) [] (arity nm) else AML (CML nm) [])

compile (s • t) σ = apply (compile s σ) (compile t σ)

compile (Λ t) σ = Clo (LamML (compile t (VML 0 ## σ))) [] 1

We explain the equations one by one.

1. In the variable case we look the result up in the additional argument σ. This

is necessary to distinguish two situations. On the one hand, the compiler is

called to compile terms to be reduced. Free variables in those terms must

be translated to V U variables, their embedding in type Univ. Function term

reverses this translation at the end of ML execution. On the other hand, the

compiler is also called to compile rewrite rules (R) to ML (compR). In this

case, free variables must be translated to ML variables which are instantiated

by pattern matching when that ML code is executed.

2. A constant becomes a closure with an empty argument list. The counter of

missing arguments is set to arity nm. Note that our implementation takes care

to create only closures with a non-zero counter—otherwise apply never fires.

This does not show up in our verification because, if apply never fires, our

computation gets stuck and we will not produce an output, hence, in particular,

no unsound or non-normal one.
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3. Term application becomes apply.

4. Term abstraction becomes a closure containing the translated ML function

waiting for a single argument. The construction V ML 0 ## σ is a new

substitution that maps 0 to V ML 0 and i+1 to liftML 0 (σ i ). This is the de

Bruijn way of moving under an abstraction.

As explained above, the compiler serves two purposes: compiling terms to be

executed (where the free variables are fixed) and compiling rules (where the free

variables are considered open). These two instances are given separate names:

comp-open t = compile t VML comp-fixed t = compile t (λi . V U i [])

We can now define the set of compiled rewrite rules compR as the compilation of R.

compR = (λ(nm , ts , t). (nm , map comp-pat (rev ts), comp-open t)) ‘ R

where f ‘ M is the image of a set under a function. Since compilation moves from

the term to the ML level, we need to reverse argument lists. On the left-hand side of

each compiled rule this is done explicitly, on the right-hand side it happens implicitly

by the interaction of apply with closures.

The function comp-pat recursively folds C nm •• xs to CU nm (rev xs). In other

words, iterated applications are folded together to application lists, which do not

exist at the term level, and arguments are reversed.

We can model the compiled rewrite rules as a set (rather than a list) because the

original rewrite rules are already a set and impose no order. For partial correctness

it is irrelevant as to which order the clauses are tried in. But for normalisation

(Section 3.6), we need to ensure that the default rule is only applied if none of

the rewrite rules is applicable. This is the reason why it is modelled separately (in

Section 3.3), and not as part of the compiled rules.

3.5 Soundness

The main theorem is partial correctness of compiled evaluation at the ML level with

respect to term reduction:

Theorem 1

If pure t, term (comp-fixed t) ⇒∗ t ′ and pure t ′ then t →∗ t ′.

Let us examine the key steps in the proof. The two inductive lemmas

Lemma 1

If pure t and ∀ i . σ i = V U i [] then (compile t σ)! = t.

Lemma 2

If pure t and ∀ i . closedML n (σ i ) then closedML n (compile t σ).

yield (term (comp-fixed t))! = t and closedML 0 (term (comp-fixed t)). Then

Theorem 2

If t ⇒∗ t ′ and closedML 0 t then t! →∗ t ′! ∧ closedML 0 t ′.
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yields the desired result t →∗ t ′ (because pure t ′ =⇒ t ′! = t ′). Theorem 2 is proved

by induction on ⇒∗ followed by induction on ⇒. The inner induction, in the term

case, requires the same theorem, but now on the ML level:

Theorem 3

If v ⇒ v ′ and closedML 0 v then v! →∗ v ′! ∧ closedML 0 v ′.

This is proved by induction on the reduction ⇒ on ML terms. There are two

nontrivial cases: β-reduction and application of a compiled rewrite rule. The former

requires a delicate and involved lemma about the interaction of the kernel and

substitution which is proved by induction on u (and whose proof requires an

auxiliary notion of substitution):

Theorem 4

If closedML 0 v and closedML (Suc 0 ) u then (u[v/0 ])! = ((lift 0 u)[V U 0 []/0 ])!

[v!/0 ].

The application of a compiled rewrite rule is justified by

Theorem 5

If (nm , vs , v ) ∈ compR and ∀ i . closedML 0 (σ i ) then C nm •• (map (substML σ)

(rev vs))! →∗ (substML σ v )!.

That is, taking the kernel of a compiled and instantiated rewrite rule yields a rewrite

on the λ-term level.

The proof of Theorem 5 requires one nontrivial inductive lemma:

Lemma 3

If pure t and ∀ i . closedML 0 (σ i ) then (substML σ (comp-open t))! = subst (kernel ◦
σ) t.

In the proof of Theorem 5 this lemma is applied to vs and v, which are the output

of comp-open by definition of compR. Hence, we need that all rules in R are pure:

(nm , ts , t) ∈ R =⇒ (∀ t∈set ts . pure t) ∧ pure t

This is an axiom because R is otherwise arbitrary. It is trivially satisfied by our

implementation because the inclusion of term as a constructor of λ-terms is an

artefact of our model.

3.6 Normalisation

We show that whenever our normalisation routine outputs a term, it is indeed a

normal one. In other words, we show the following theorem:

Theorem 6

If pure t and term (comp-fixed t) ⇒∗ t ′ and pure t ′ then normal t ′.

Here the predicate normal is defined inductively in the usual way.

∀ t∈set ts . normal t

normal (V x •• ts)

normal t

normal (Λ t)
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∀ t∈set ts . normal t

∀ σ. ∀ (nm ′, ls , r)∈R. ¬ (nm = nm ′ ∧ take |ls | ts = map (subst σ) ls)

normal (C nm •• ts)

The main idea to prove normalisation is to notice that function term is defined

such that it can output only normal terms. The variable rule says term (V U x vs)

⇒ V x •• map term (rev vs) and if ts are normal, then so is V x •• ts. Similarly, the

lambda rule says term (Clo vf vs n) ⇒ Λ (term (apply (lift 0 (Clo vf vs n)) (V U 0

[]))) and if t is normal, so is Λ t. The only non-trivial case is that of a constructor

CU nm of the universal data type. In the rule term (CU nm vs) ⇒ C nm •• map term

(rev vs) we need to know what the arguments vs look like. To do so, we introduce

a predicate C-normalML stating that CU nm vs is only formed if no rule for nm is

applicable. In other words, the main rule of the recursive predicate C-normalML is

the following:

C-normalML (CU nm vs) ←→ (∀ v∈set vs . C-normalML v ) ∧ no-match-compR nm vs

In all other cases C-normalML is defined homomorphically.

Since our notion of non-matching is a positive one—i.e., we require a different

constructor to be exhibited—adding new arguments to a failing match will preserve

this property.

If no-match-compR nm vs then no-match-compR nm (v ·vs).

Similarly, as reduction will never change outermost CU constructors, non-matching

is preserved under reductions.

If no-matchML ps vs and vs ⇒ vs ′ then no-matchML ps vs ′.

Given these two observations, it is easy to show that C-normalML is established by

compilation (because there are simply no constructors CU in the output of compile)

and is invariant under reduction:

Lemma 4

If pure t and ∀ i . C-normalML (σ i ) then C-normalML (compile t σ).

Lemma 5

If v ⇒ v ′ and C-normalML v then C-normalML v ′.

Now we define a corresponding notion of constructor normality at the term level.

However, at the term level the failure of the match is not immediately visible, but

only after term is evaluated further. We therefore introduce a predicate C-normal

that anticipates term being unfolded further. The only non-homomorphic clause in

the inductive definition of C-normal is the one for the constructor C.

∀ t∈set ts . C-normal t no-match-R nm (map dterm ts)

C-normal (C nm •• ts)

The actual anticipation is done by the function dterm which is homomorphic except

dterm (term v ) = dtermML v
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where dtermML is defined to be

dtermML (CU nm vs) = C nm •• map dtermML (rev vs)

and V 0 in all other cases. For pure terms, dterm behaves like the identity.

By means of dterm, our notion of non-matching at the ML-level implies non-

matching at the term level:

Lemma 6

If no-matchML ps vs then no-match (map dtermML (rev ps)) (map dtermML (rev

vs)).

The predicate C-normal is preserved under reduction, and so is the skeleton of

the outermost constructors.

Lemma 7

If t ⇒ t ′ and C-normal t then

C-normal t ′ ∧
(dterm t = C nm •• ts −→
dterm t ′ = C nm •• map dterm (CU-args t ′) ∧
|CU-args t | = |CU-args t ′| ∧
(∀ i<|CU-args t |. (CU-args t)[i ] ⇒∗ (CU-args t ′)[i ]))

Here CU-args extracts the arguments of a constructor term:

CU-args (s • t) = CU-args s @ [t]

CU-args (term (CU nm vs)) = map term (rev vs)

CU-args = []

Now we can prove Theorem 6. Let us examine the only critical reduction term

(CU nm vs) ⇒ C nm •• map term (rev vs). Because all ML-values during reduction

are C-normalML, the subterm CU nm vs is C-normalML. By definition, this implies

no-match-compR nm vs. By Lemma 6 we obtain the corresponding non-matchings at

the term level after the application of dterm, hence the righ-hand side is C-normal.

Lemma 7 asserts that the constructor structure is preserved under reduction. But

if a reduct happens to be pure, the detour via dterm is no longer needed, as it

has no effect. Hence, we have constructive non-matching at the term level outright.

Theorem 6 follows.

4 Realisation in Isabelle

The implementation of our NBE approach in Isabelle/HOL is based on a generic

code generator framework (Haftmann & Nipkow, 2010). The following diagram and

description explains how this is connected to the rest of Isabelle. The box labelled

“extralogical part” comprises the extension of Isabelle’s trusted kernel.
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extralogical part

T1

t1
preprocessor

t4

t3 = t4

T2

t2

t1 = t2

postprocessor

translation

t3

P

it

evaluation
& reconstruction

compilation

funs

e

1. The input is an Isabelle term t1 to be normalised with respect to a set of

equational theorems T 1 (and β-reduction). Note that while our formalisation

has no notion of order between equations, the implementation necessarily has

since it uses ML for evaluation; hence it allows the user to specify an order in

which overlapping equations shall be applied.

2. The framework allows one to configure arbitrary logical transformations on

input t1 (and T 1) and output t3 (pre- and post-processing). This is for the

user’s convenience and strictly on the level of theorems: both transformations

yield equational theorems t1 = t2 and t3 = t4; together with the equation

t2 = t3 stemming from the actual evaluation (this is where we have to trust

the evaluator!), the desired t1 = t4 is obtained by transitivity and returned to

the user.

3. The main task of the framework is to transform a set of equational theorems

T 2 into a program P (and t2 into it) in an abstract intermediate language

capturing the essence of languages like SML or Haskell with an equational se-

mantics. The intermediate term language is practically the same as the Isabelle

term language, and the equational semantics is preserved in the translation. The

key changes are the replacement of an unordered set of equational theorems

by a structured presentation with explicit dependencies, and, most importantly,

the removal of overloading and the dictionary translation of type classes. For

details see Haftmann & Nipkow 2010. Inputs to NBE are in this intermediate

language. Having compiled away type classes and overloading, NBE oper-

ates on terms following the Hindley–Milner type discipline, as assumed in

Section 2.

4. P is compiled (via comp-open, see Section 3.4) to a series of SML function

definitions funs and it (via comp-fixed ) to an SML term e. Then term (let

funs in e end) is given to the SML compiler, causing the evaluation of e

and the translation of the result back into an Isabelle term; type reconstruction

(see Section 2) on the result yields t3.

We conducted a number of timing measurements to determine the relative perfor-

mance of NBE with respect to two other normalisation mechanisms available in

Isabelle:

eval , the ground evaluator which compiles terms and theorems directly to SML,

without support for open terms. It uses the same code generator framework but

defines a native SML data type for each Isabelle data type, rather than operating

on a universal data type. For details see Haftmann & Nipkow 2010.
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simp, the symbolic simplifier which operates on the level of Isabelle terms and

theorems and produces a theorem purely by inference.

Our setup for this experiment ensures that all three evaluators use the same

equational theorems and the same reduction strategy.

We measured the performance of three different programs: ack computes the

Ackermann function of 3 and 12 (in successor representation); rotate rotates a list

of 10 integers 5 ∗ 107 times; sort sorts the list of integers from 10,000 down to 0 into

ascending order by insertion sort.

ack rotate sort

absolute relative absolute relative absolute relative

eval 5 .07 17 .07 5 .05

nbe 70 1 250 1 110 1

simp 3163 45 3.2 ∗ 106 128 14 ∗ 106 1287

Absolute figures are in seconds using Isabelle 2011 with PolyML 5.3.0 on a MacBook

Pro with a 2.66 GHz Intel processor.

Since all examples should be runnable with each of the evaluation mechanisms,

they only involve ground terms (necessary for eval — ground terms do not speed

up nbe or simp). In order to obtain reliable figures, we had to use inputs that

trigger long computations. However, simp does not cope with such large examples

(it actually runs out of space on sort). As a result, the simp times for sort and rotate

are estimates extrapolating the running times on smaller inputs.

Unsurprisingly, nbe turns out to be faster than simp and slower than eval. There

is a trade-off between performance and expressiveness. While eval is fast, it can

evaluate only closed terms. Furthermore, if the result of eval is to be “read

back” as an Isabelle term, it must only contain constructors and no function

values. Finally, eval cannot cope with additional rewrite rules like associativ-

ity. With a performance penalty of a factor of 10–20, nbe can lift all these

restrictions, while still outperforming the simplifier by a factor of 50 or much

more.

In the above examples, compilation time is about 0.1 second or less for eval and

nbe; simp requires no compilation at all, the necessary data structures are main-

tained incrementally. For terms involving many data type and function definitions,

compilation time can obviously increase. For typical examples it is still in the range

of 1 second. One atypical example (Nipkow et al., 2006) produces 1200 lines ML

for eval ; generating and compiling it takes about 1 second. But generating and

compiling the corresponding more complicated nbe code takes about 40 seconds.

When we investigated this, we found that 90% of the time was spent in the ML

compiler (PolyML): one particular function definition yielded very complicated ML

patterns that took 30 seconds to compile.
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5 Extensions

5.1 Non-left-linear rules

In our modelling of the translation, pattern matching was quite liberal. In particular,

non-left-linear equations were admissible. However, an actual programming language

like ML does not allow such patterns. Nevertheless, they can be desirable in proven

rewrite rules. Examples include the defining equation (x = x) = True for equality,

and x - x = 0.

Fortunately, equality can be approximated from below. That is, we can define a

function same on our universal type such that, if same u v evaluates to True then

u and v definitely denote the same value; moreover, the definition is such that in

enough cases equality is actually realised and the function is still efficient. We use

the following definition of same:

fun same (Const (k, xs), Const (l, ys)) =

k = l andalso sames (xs, ys)

| same (Var (k, xs), Var (l, ys)) =

k = l andalso sames (xs, ys)

| same _ = false

and sames ([], []) = true

| sames (x :: xs, y :: ys) = same (x, y) andalso sames (xs, ys)

| sames _ = false;

Using this function same, non-left-linear rules can be added by using different

variables for each occurrence of a variable used multiple times on the left-hand side,

and requiring these variables to be the same. In Haskell, we could write such an

equation simply by conditional pattern matching.

minus [x, y] | same x y = Const "0" []

...

Since ML does not natively support guarded pattern matching, we implement it by

a sequence of functions, each handling one pattern and calling the next function,

if the pattern matching fails. With this technique, the above conditional pattern

matching is implemented as

fun minus_1 [x, y] =

if same x y then Const ("0", []) else minus_2 [x, y]

| minus_1 args = minus_2 args

fun minus_2 ...

This extension adds flexibility to the allowed rewrite rules. However, the under-

approximation of same comes at the price that the default rule is used even in cases

where a non-left-linear rule might be applicable but this is not detected as there

are lambda-abstractions in the non-left-linear positions. Hence, non-left-linear rules

mean that we can no longer guarantee normality of the result computed by our

implementation.

Correctness of the result still holds: in our model of ML, we allow non-left-linear

function definitions. To prove that this carries over to real ML, one would need to
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prove that the above schema for translating non-left-linear functions into left-linear

ones with same is correct: any reduction of the translated function is justified by a

reduction with the original function.

5.2 Case combinators

A second extension of the formalised behaviour is needed, as the call-by-value

semantics of ML sometimes leads to undesirable evaluation behaviour. In particular,

a naive implementation of the “if” construct as ternary function would not work in

recursive definitions like

fib n = if (n <= 2) 1 (fib (n - 1) + fib (n - 2))

The problem is, that in a call-by-value language, the else-branch would be evaluated

unconditionally, leading to non-termination. For this reason, languages like ML

treat “if” as a special syntactic construct, not as an ordinary function. To be able

to use normalisation by evaluation for functions like fib we need to treat the “if”

construct special as well.

For this, we equip our code generation with an explicit notion of “case combina-

tors”. A constant C can act as a case combinator if equations of the following form

are proven.

C w1 · · · wn (c1 x1) = w1 x1

...

C w1 · · · wn (cn xn) = wn xn

These equations are proved automatically for standard constructs like “if” and cases

on data types. They justify the following translation of C w1 · · · wn t into ML:

case t of Const (c_1, ts) => foldl apply w_1 ts

| ...

| Const (c_n, ts) => foldl apply w_n ts

| _ => C_next_case

Here C_next_case simulates the failure of the pattern matching for this equation:

it calls the next defining equation of the surrounding pattern matching, possibly the

default equation. An alternative would have been to leave t unchanged on failure,

but practical experience has shown that propagating a case match failure to a match

failure of the whole equation yields evaluation results which are easier to interpret

for the human user. This propagation is admissible since it does not violate partial

correctness.

For our example function fib the code in Figure 1 is generated. Note that the

recursive case is only evaluated once we have established that n � 2 evaluates to

False, i.e. only once we have positive knowledge that this case is to be used.

Correctness of this extension with case combinators is easy because we only

generate case constructs in ML for functions where the user has provided equational

theorems that prove that the function acts like a case combinator. As pointed out
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fun fib [n] = case less_eq [n, Const ("2", [])]

of Const ("True", []) => Const ("1", [])

| Const ("False", []) =>

apply

(apply plus

(fib [apply (apply minus n) (Const ("1", []))]))

(fib [apply (apply minus n) (Const ("2", []))])

| _ => fib_2 [n]

fun fib_2 [n] = Const("fib", [n])

Fig. 1. Translation of fib.

above, normality of the result is no longer guaranteed because of readability reasons:

equations where the right-hand side starts with a case t of are only applied if the

t starts with a constructor, i.e. the case combinator can be contracted.

6 Related work

The work probably most closely related to ours is that of Berger, Eberl, and

Schwichtenberg (Berger et al. 1998, 2003) who also integrated NBE into a proof

assistant. However, their approach is based on a type-indexed semantics with

constructors coinciding with those of the object language. Besides the administrative

hassle, the commitment to a particular type system in the object language, and

unneeded and unwanted η-expansions, the main disadvantage of this choice is

that functions, like the append function in our example in Section 2, cannot serve

the role as additional constructors. Note that in our example, this usage of an

append constructor made it possible to effortlessly incorporate associativity into the

definition of the function append, with pattern matching directly inherited from the

implementation language.

The unavailability of the shape of a semantic object, unless it is built from a

canonical constructor of some ground type, made it necessary in the approach by

Berger et al. to revert to the term representation. This led to the artificial (at least

from a user’s point of view) and somewhat obscure distinction between so-called

“computational rules” and “proper rewrite rules” where only the former are handled

by NBE. The latter are carried out at a symbolic level (using pattern matching on

the term representation). This mixture of computations on the term representation

and in the implementation language requires a continuous changing between both

representations. In fact, one full evaluation and reification is performed for each

single usage of a rewrite rule.

Two other theorem proving systems provide specialised efficient normalisers for

open λ-terms. Both of them are based on abstract machines and are therefore

complementary to our compiled approach:

• Barras (Barras, 2000) extends the HOL (Gordon & Melham, 1993) system

with an abstract reduction machine for efficient rewriting. It is as general

as our approach and even goes through the inference kernel. For efficiency

reasons, HOL’s term language was extended with explicit substitutions.
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• Grégoire and Leroy (Grégoire & Leroy, 2002) present and verify a modification

of the abstract machine underling OCaml. This modified abstract machine has

become part of Coq’s trusted proof kernel. The main difference is that they

cannot deal with additional rewrite rules like associativity.

Compiled approaches to rewriting of first-order terms can also be found in other

theorem provers, e.g. KIV (Reif et al., 1998).

Boesplfug (Boespflug, 2010) discusses variations of untyped normalisation by eval-

uation. The main emphasis is on comparing performance of various optimisations of

the generated code. In particular, it is pointed out that performance can be increased

considerably by using native ML-constructors for the object language constructors

rather than representing all of them via a single Const as we do.
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