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Abstract—Monadic second-order logic on finite words (MSO)
is a decidable yet expressive logic into which many decision
problems can be encoded.

Since MSO formulas correspond to regular languages, equiva-
lence of MSO formulas can be reduced to the equivalence of some
regular structures (e.g. automata). However, formal verification of
automata is a difficult task. Instead, the recursive data structure
of regular expressions simplifies the formalization, notably by
offering a structural induction principle.

Decision procedures of regular expression equivalence have
been formalized before, usually based on Brzozowski derivatives.
Yet, for a straightforward embedding of MSO formulas into
regular expressions an extension of regular expressions with a
projection operation is required. We prove total correctness and
completeness of an equivalence checker for regular expressions
extended in that way. We also define a semantics-preserving
translation of MSO formulas into regular expressions. Our results
have been formalized and verified in the theorem prover Isabelle.
Using Isabelle’s code generation facility, this yields a formally
verified algorithm that decides equivalence of MSO formulas.

Index Terms—MSO, decision procedure, regular expressions,
Brzozowski derivatives, interactive theorem proving, Isabelle

I. INTRODUCTION

Monadic second-order logic on finite words (MSO) is
a decidable yet expressive logic into which many decision
problems can be encoded [21]. Note that by MSO we always
refer to the logic of one successor. Nevertheless several closely
related semantics can be found in the literature. We consider
MSO over finite words (sometimes called M2L(Str) [13]),
as opposed to WS1S, the weak monadic second-order logic
of 1 successor (see Section V). There seems to be some
disagreement as to which semantics is the more appropriate
one for verification purposes [3], [14].

Essentially, MSO formulas describe regular languages.
Therefore MSO formulas can be decided by translating them
into automata. This is the basis of the highly successful MONA
tool [12] for deciding WS1S. MONA’s success is due to its (in
practical terms) highly efficient implementation and to the ease
with which very different verification problems can be encoded
in monadic second-order logic. Because of these properties,
MONA was linked to Isabelle by Basin and Friedrich [4] and
to PVS by Owre and Rueß [19]. In both cases, MONA is used
as an oracle for deciding formulas in the respective theorem
prover. Because MONA is not verified it has to be trusted.

In contrast to automata, which are typically implemented
with low-level and hard-to-verify data structures, regular ex-

pressions are recursive data types that functional programmers
and theorem provers love because they lead to recursive
functions that can be verified by structural induction. The
key are Brzozowski’s derivatives [7], which can be seen as
a way of simulating automaton states with regular expressions
and computing the next-state function symbolically. Within the
last three years this has lead to a number of publications that
have employed theorem provers (Coq, Isabelle and Matita)
to formalize and verify decision procedures for equivalence
of regular expressions based on derivatives. Coquand and
Siles [9] state in their future work section that an ambitious
project will be to use this line of work for writing a decision
procedure for WS1S. Our paper does just that, except that
we work with the closely related MSO on finite words. More
than that: we show not only how to do it (in Isabelle) but also
that the resulting implementation is efficient enough for small
examples.

In this paper we distinguish ordinary regular expressions
that contain only concatenation, union, and iteration from
extended regular expressions that also provide complement and
intersection.

The rest of the paper is organized as follows. Section II gives
an overview of related work. Section III introduces some basic
notations. Sections IV and V constitute the main contribution
of our paper—the first shows how to decide equivalence of
extended regular expressions with an additional projection
operation, the second reduces equivalence of MSO formulas
to equivalence of exactly those regular expressions. In total
this yields a decision procedure for MSO on words. A short
case study of the decision procedure is given in Section VI.

II. RELATED WORK

Brzozowski [7] introduced derivatives of extended regular
expressions. Antimirov [1] introduced partial derivatives of
regular expressions. Caron et al. [8] extended Antimirov to
extended regular expressions.

In this paragraph we look at work that was conducted
within the context of a theorem prover. The first authors to
publish a verified equivalence checker for regular expressions
were Braibant and Pous [6]. They worked with automata,
not regular expressions, their theory was large and their
algorithm efficient. In response, Krauss and Nipkow [15] gave
a much simpler partial correctness proof for an equivalence
checker for regular expressions based on derivatives. Coquand



and Siles [9] showed total correctness of their equivalence
checker for extended regular expressions based on derivatives.
Asperti [2] presented an equivalence checker for regular
expressions via “pointed regular expressions”, i.e. regular
expressions with markers (analogous to [10]), and showed
total correctness. Moreira et al. [16] presented an equivalence
checker for regular expressions based on partial derivatives
and showed its total correctness.

The nice algebraic nature of derivatives was also noticed
by some functional programmers [10], [18] in the context of
regular expression matching; no proofs were given.

Berghofer and Reiter [5] formalized a decision procedure
for Presburger arithmetic via automata in Isabelle/HOL.

III. PRELIMINARIES

Although we formalized everything in this paper in the
theorem prover Isabelle/HOL [17], no knowledge of theorem
provers or Isabelle/HOL is required because we employ mostly
ordinary mathematical notation in our presentation. Some
specific notations are summarized below.

The symbol B represents the type of Booleans, where ⊺ and
� represent true and false. The type of sets and the type of
lists over some type τ are written τ set and τ list. In general,
type constructors follow their arguments. The letters α and β
represent type variables. The notation t ∶∶ τ means that term t
has type τ.

Many of our functions are curried, i.e. of type τ1→ τ2→ τ
instead of τ1×τ2→ τ. In some cases we write the first argument
as an index: instead of f a b we write fa(b) (in preference to
just fa b). The projections of pairs to their first and second
component are denoted by fst and snd.

The image of a function f over a set S is written f ●S .
Lists are built up from the empty list [] via the infix #

operator that prepends an element x to a list xs: x # xs. Two
lists are concatenated with the infix @ operator. Function
map ∶∶ (α→ β)→ α list→ β list applies its first argument to all
elements of its second argument. Accessing the nth element
of a list xs is denoted by xs[n]; the indexing is zero-based.
The length of the list xs is written ∣xs∣.

Finite words as in formal language theory are modelled as
finite lists, i.e. type α list. The empty word is the empty list. As
is customary, concatenation of two words u and v is denoted
by their juxtaposition uv; similarly for a single letter a of the
alphabet and a word w: aw. That is, the operators # and @
remain implicit (for words, not for arbitrary lists).

IV. EXTENDED REGULAR EXPRESSIONS

In Section V, MSO formulas are translated into regular
expressions such that encodings of models of a formula
correspond exactly to words in the regular language. Thereby,
equivalence of formulas is reduced to the equivalence of
regular expressions.

Decision procedures for equivalence of regular expression
have been formalized earlier in theorem provers. Here, we
extend the existing formalization and the soundness proof in
Isabelle/HOL by Krauss and Nipkow [15] with negation and

intersection operation on regular expressions, as well as with
a nonstandard projection operation. Additionally, we provide
proofs of termination and completeness.

A. Syntax and Semantics

Regular expressions extended with intersection and comple-
ment allow us to encode Boolean operators on formulas in a
straightforward fashion. A further operation—the projection
Π—plays the crucial role of encoding existential quantifiers.
These Π-extended regular expressions (to distinguish them
from mere extended regular expressions) are defined as a
recursive data type αRE, where α is the type of the underlying
alphabet. In conventional concrete syntax, αRE is defined by
the grammar

r = 0 ∣ 1 ∣ a
∣ r + s ∣ r ⋅ s ∣ r∗

∣ r ∩ s ∣ ¬ r ∣ Π r

where r, s ∶∶ α RE and a ∶∶ α. Note that much of the time
we will omit the “Π-extended” and simply speak of regular
expressions if there is no danger of confusion.

We assume that type α is partitioned into a family of
alphabets Σn that depend of a natural number n. In our
application, n will represent the number of free variables of
the translated MSO formula. For now Σn is just a parameter
of our setup.

We focus on wellformed regular expressions where all
atoms come from the same alphabet Σn. This will guarantee
that the language of such a wellformed expression is a subset
of Σ

∗
n . The projection operation complicates wellformedness

a little. Because projection is meant to encode existential
quantifiers, projection should transform a regular expression
over Σn+1 into a regular expression over Σn, just as the
existential quantifier transforms a formula with n + 1 free
variables into a formula with n free variables. Thus projection
changes the alphabet.

Wellformedness is defined as the recursive predicate wf ∶∶
N→ αRE→B.

wfn(0) = ⊺ wfn(1) = ⊺
wfn(a) = a ∈ Σn wfn(r + s) = wfn(r) ∧wfn(s)
wfn(r ⋅ s) = wfn(r) ∧wfn(s) wfn(r∗) = wfn(r)
wfn(r ∩ s) = wfn(r) ∧wfn(s) wfn(¬ r) = wfn(r)
wfn(Π r) = wfn+1(r)

We call a regular expression r n-wellformed if wfn(r) holds.
The language L ∶∶ N → α RE → (α list) set of a regular

expression is defined as usual, except for the equations for
complement and projection. For an n-wellformed regular ex-
pression the definition yields a subset of Σ

∗
n .

Ln(0) = {} Ln(1) = {[]}
Ln(a) = {a} Ln(r + s) =Ln(r) ∪Ln(s)
Ln(r ⋅ s) =Ln(r) ⋅Ln(s) Ln(r∗) =Ln(r)∗

Ln(r ∩ s) =Ln(r) ∩Ln(s) Ln(¬ r) = Σ
∗
n ∖Ln(r)

Ln(Π r) = map π ●Ln+1(r)
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The first unusual point is the parametrization with n. It
expresses that we expect a regular expression over Σn and
is necessary for the definition Ln(¬ r) = Σ

∗
n ∖Ln(r).

The definition Ln(Π r) = map π ●Ln+1(r) is parameterized
by a function π ∶∶ Σn+1 → Σn. The projection Π denotes the
homomorphic image under this fixed π. In more detail: map
lifts π homomorphically to words (lists), and ● lifts it to sets
of words. Therefore Π transforms a language over Σn+1 into
a language over Σn.

To understand the “projection” terminology, it is helpful to
think of elements of Σn as lists of fixed length n over some
alphabet Σ and of π as the tail function on lists that drops the
first element of the list. A word over Σn is then a list of lists.
Though this is a good intuition, the actual encoding of for-
mulas later on will be slightly more complicated. Fortunately
we can ignore these complications for now by working with
arbitrary but fixed Σn and π in the current section. Specific
instantiations for them are given in Section V.

B. Deciding Language Equivalence

Now we turn our attention to deciding equivalence of Π-
extended regular expressions. The key concepts required for
this are finality and derivatives. We call a regular expression
final if its language contains the empty word []. Finality can
be easily checked syntactically by the following recursive
function ε ∶∶ αRE→B.

ε(0) = � ε(1) = ⊺
ε(a) = � ε(r + s) = ε(r) ∨ ε(s)
ε(r ⋅ s) = ε(r) ∧ ε(s) ε(r∗) = ⊺
ε(r ∩ s) = ε(r) ∧ ε(s) ε(¬ r) = ¬ε(r)
ε(Π r) = ε(r)

The characteristic property—ε(r) iff [] ∈Ln(r) for any regular
expression r and n ∈N—follows by structural induction on r.

The second key concept—the derivative of a regular expres-
sion D ∶∶α→αRE→αRE and its lifting to words D∗ ∶∶α list→
αRE → αRE—semantically corresponds to left quotients of
regular languages with respect to a fixed letter or word. Just
as before, the recursive definition is purely syntactic and the
semantic correspondence is established by induction.

Db(0) = 0 Db(1) = 0
Db(a) = if a = b then 1 else 0 Db(r + s) =Db(r) +Db(s)
Db(r ⋅ s) = Db(r∗) =Db(r) ⋅ r∗

if ε(r) thenDb(r) ⋅ s +Db(s)
elseDb(r) ⋅ s
Db(r ∩ s) =Db(r) ∩Db(s) Db(¬ r) = ¬Db(r)

Db(Π r) =Π( ⊕
c∈π−b
Dc(r))

D∗[](r) = r D∗bw(r) =D∗w(Db(r))

Lemma 1. Assume b ∈Σn, v ∈Σ
∗
n and let r be an n-wellformed

regular expression. Then Ln(Db(r)) = {w ∣ bw ∈ Ln(r)} and
wfn(Db(r)), and consequently Ln(D∗v (r)) = {w ∣ vw ∈ Ln(r)}
and wfn(D∗v (r)).

The projection case introduced some new syntax that de-
serves some explanation. The preimage π− applied to a letter
b ∈ Σn denotes the set {c ∈ Σn+1 ∣ π c = b}. Our alphabets Σn
are finite for each n, hence so is the preimage of a letter. The
summation ⊕ over a finite set denotes the iterated application
of the +-constructor of regular expressions. The summation
over the empty set is defined as 0.

Derivatives of extended regular expressions were introduced
by Brzozowski [7] almost fifty years ago. Our contribution is
the extension of the concept to handle the projection operation.
Since the projection acts homomorphically on words, it is clear
that the derivative of Π r with respect to a letter b can be
expressed as a projection of derivatives of r. The concrete
definition is a consequence of the following identity of left
quotients for b ∈ Σn and A ⊆ Σ

∗
n+1:

{w ∣ bw ∈ map π ●A} = map π ● ⋃
c∈π−b

{w ∣ cw ∈ A}

Although we completely avoid automata in the formaliza-
tion, a derivative with respect to the letter b can be seen as a
transition labelled by b in a deterministic automaton, the states
of which are labelled by regular expressions. The automaton
accepting the language of a regular expression r can be thus
constructed iteratively by exploring all derivatives of r and
defining exactly those states as accepting, which are labelled
by a final regular expression. However, the set {D∗w(r) ∣ w ∶∶
α list} of states reachable in this manner is infinite in general.
To obtain a finite automaton, the states must be partitioned
into classes of regular expressions that are ACI-equivalent, i.e.
syntactically equal modulo associativity, commutativity and
idempotence of the +-constructor. Brzozowski showed that
the number of such classes for a fixed regular expression r
is finite by structural induction on r. The inductive steps re-
quire proving finiteness by representing equivalence classes of
derivatives of the expression in terms of equivalence classes of
derivatives of subexpressions. This is technically complicated,
especially for concatenation, iteration and projection, since it
requires a careful choice representatives of equivalence classes
to reason about them, and Isabelle’s automation can not help
much with the finiteness arguments—indeed the verification of
Theorem 2 constitutes the most intricate proof in the present
work.

Theorem 2. {⟪D∗w(r)⟫ ∣ w ∶∶ α list} is finite for any regular
expression r.

The function ⟪−⟫ ∶∶ αRE→ αRE is the ACI normalization
function, which maps ACI-equivalent regular expressions to
the same representative. It is defined by means of a normaliz-
ing constructor ⊕ ∶∶αRE→αRE→αRE and an arbitrary linear
order ⪯ on regular expressions.

⟪0⟫ = 0 ⟪1⟫ = 1
⟪a⟫ = a ⟪r + s⟫ = ⟪r⟫⊕ ⟪s⟫
⟪r ⋅ s⟫ = ⟪r⟫ ⋅ ⟪s⟫ ⟪r∗⟫ = ⟪r⟫∗

⟪r ∩ s⟫ = ⟪r⟫ ∩ ⟪s⟫ ⟪¬ r⟫ = ¬⟪r⟫
⟪Π r⟫ = Π⟪r⟫
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(r + s)⊕ t = r ⊕ (s⊕ t)
r ⊕ (s + t) = if r = s then s + t

else if r ⪯ s then r + (s + t)
else s + (r ⊕ t)

r ⊕ s = if r = s then r
else if r ⪯ s then r + s

else s + r

The equations for ⊕ are matched sequentially.
After the application of ⟪−⟫ all sums in the expression

are associated to the right and the summands are sorted with
respect to ⪯ and duplicated summands are removed. From this,
further later on useful properties of ⟪−⟫ can be derived:

Lemma 3. Let r be a regular expression, n ∈ N and b ∈ Σn.
Then Ln⟪r⟫ =Ln(r), ⟪⟪r⟫⟫ = ⟪r⟫ and ⟪Db⟪r⟫⟫ = ⟪Db(r)⟫.

So far, ACI normalization only connects Brzozowski deriva-
tives to deterministic finite automata. Furthermore, it will
ensure termination of our decision procedure even without
ever entering the world of automata. Instead we follow
Rutten [20], who gives an alternative view on determinis-
tic automata as coalgebras. In the coalgebraic setting the
function λr. (ε(r), λb. Db(r)) ∶∶ αRE → B× (α → αRE) is a
D-coalgebra for the functor D(S) = B× (α → S). The final
coalgebra of D exists and corresponds exactly to the set of all
languages. Therefore, we obtain the powerful coinduction prin-
ciple, reducing language equality to bisimilarity. We phrase
this general theorem instantiated to our concrete setting. The
formalized proof itself does not require any category theory;
it resembles the reasoning in Rutten [20, §4].

Theorem 4 (Coinduction). Let R ∶∶ (αRE×αRE) set be a
relation, such that for all (r, s) ∈ R we have:

1) wfn(r) ∧wfn(s);
2) ε(r)↔ ε(s);
3) (⟪Db(r)⟫, ⟪Db(s)⟫) ∈ R for all b ∈ Σn.

Then for all (r, s) ∈ R, Ln(r) =Ln(s) holds.

From Lemmas 1 and Lemma 3, we know that the relation
{(⟪D∗w(r)⟫,⟪D∗w(s)⟫) ∣w ∈Σ

∗
n} contains (⟪r⟫, ⟪s⟫) and fulfils

the assumptions 1 and 3 of the coinduction theorem, assuming
that r and s are both n-wellformed. Moreover, using Theorem 2
it follows that this relation is finite. Thus, checking assumption
2 for every pair of this finite relation is sufficient to prove
language equality of r and s by coinduction. We obtain the
following abstract specification of a language equivalence
checking algorithm.

Theorem 5. Let r and s be n-wellformed regular expressions.
Then Ln(r) =Ln(s) iff we have ε(r′)↔ ε(s′) for all (r′, s′) ∈
{(⟪D∗w(r)⟫, ⟪D∗w(s)⟫) ∣ w ∈ Σ

∗
n}.

C. Executable Algorithm from a Theorem

Our goal is not only to prove some abstract theorems about a
decision procedure, but also to extract executable code in some
functional programming language (e.g. Standard ML, Haskell,
OCaml) using the code generation facility of Isabelle/HOL
[11]. Theorem 5 is not enough to do so: it contains a set

comprehension ranging over the infinite set Σ
∗
n , which is not

executable as such. We need to instruct the system how to
enumerate {(⟪D∗w(r)⟫, ⟪D∗w(s)⟫) ∣ w ∈ Σ

∗
n}.

We start with the pair (⟪r⟫,⟪s⟫) and compute its pairwise
derivatives for all letters of the alphabet. For the computed
pairs of regular expressions we proceed by computing their
derivatives and so on. This of course does not terminate.
However, if we stop our exploration at pairs that we have
seen before it does, since we are exploring a finite set.

In more detail, we use a worklist algorithm that iteratively
adds not yet inspected pairs of regular expressions while
exhausting words of increasing length until no new pairs are
generated. Saturation is reached by means of the executable
combinator while ∶∶ (α→ B)→ (α→ α)→ α→ α option from
the Isabelle/HOL library. The option type α option has two
constructors None ∶∶ αoption and Some ∶∶ α→ αoption. Some
lifts elements from the base type α to the option type, while
None is usually used to indicate some exceptional behaviour.
The definition of while

while b c s = if ∃k.¬b(ck(s)) then Some (cLeast k.¬b(ck(s))(s))
else None

is not executable, but the following key lemma is:

while b c s = if b s then while b c (c s) else Some s

The code generated from this recursion equation will return
Some s in case the definition of while says so, but instead
of returning None, it will not terminate. Thus we can prove
termination if we can show that the result is ≠ None.

In our algorithm, the state s of the while loop consists of a
worklist ws ∶∶ (αRE×αRE) list of unprocessed pairs of regular
expressions together with a set N ∶∶ (γ×γ) set of already
seen pairs modulo a normalization function norm ∶∶ αRE→ γ.
The normalization function (which is a parameter of our
setup) is applied to already ACI-normalized expressions, to
syntactically identify further language equivalent expressions.
This makes the bisimulation relation that must be exhausted
smaller, thus saturation is reached faster. The range type of
the normalization is not fixed, but we require a notion of
languages Lγ ∶∶N→ γ→ (α list) set to be available for it, such
that Lγn(norm r) =Ln(r) holds. In the simplest case norm can
be the identity function and Lγ = L. More interesting is a
function on regular expressions that eliminates 0 from unions,
concatenations and intersections and 1 from concatenations.
Not fixing the range type allows to use different regular
structures such as automata or different types of regular
expressions, on which further simplifications might be easier.

Finally, we define the functions b ∶∶ (αRE×αRE) list ×
(γ×γ) set → B and c ∶∶ N → (αRE×αRE) list× (γ×γ) set →
(αRE×αRE) list× (γ×γ) set, that are given as arguments to
while. A wellformedness check completes the now executable
algorithm eqvRE ∶∶N→ αRE→ αRE→B.

b ([], _) = �
b ((r, s) # _, _) = ε(r)↔ ε(s)
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cn ((r, s) # ws, N) =
let

succs = map (λb.
let

r′ = ⟪Db(r)⟫
s′ = ⟪Db(s)⟫

in ((r′, s′), (norm r′, norm s′))) Σn
new = remdups snd (filter (λ(_, rs). rs ∉ N) succs)

in (ws @ map fst new, set (map snd new) ∪ N)

eqvREn r s =
wfn(r) ∧wfn(s) ∧
(case while b cn ([(⟪r⟫,⟪s⟫)],{(norm⟪r⟫,norm⟪s⟫)}) of

([],_)⇒ ⊺
∣ (_ # _,_)⇒ �)

The function set ∶∶ α list→ α set maps a list to the set of its
elements, filter ∶∶ (α→B)→α list→α list removes elements that
do not fulfil the given predicate, while remdups ∶∶ (α→ β)→
α list→ α list is used to keep the worklist as small as possible.
remdups f xs removes duplicates from xs modulo the function
f , e.g. remdups snd [(0, 0), (1,0)] = [(1, 0)] (which element
is actually kept is irrelevant; the result [(0, 0)] would also be
valid).

The termination of eqvRE for any input is guaranteed
by two facts: (1) all recursively defined functions in Isa-
belle/HOL terminate by their definitional principle (either
primitive of wellfounded recursion) and (2) the termination
of while follows from Theorem 2 and the fact that the
set N of already seen pairs in the state is a subset of
norm ●{(⟪D∗w(r)⟫, ⟪D∗w(s)⟫) ∣ w ∈ Σ

∗
n}.

Theorem 6 (Termination). Let r and s be n-wellformed
regular expressions. Then

while b cn ([(⟪r⟫,⟪s⟫)],{(norm⟪r⟫,norm⟪s⟫)}) ≠ None.

Function eqvRE deserves the name decision procedure since
it constitutes the refinement of the algorithm abstractly stated
in Theorem 5, and is therefore sound and complete.

Theorem 7 (Soundness). Let r and s be regular expressions
such that eqvREn r s. Then Ln(r) =Ln(s).

Theorem 8 (Completeness). Let r and s be n-wellformed
regular expressions such that Ln(r) =Ln(s). Then eqvREn r s.

Let us observe the decision procedure at work by looking
at the regular expressions a∗ and 1 + a ⋅ a∗ for some a ∈ Σn =
{a,b} for some n. For presentation purposes, the correspon-
dence of derivatives to automata is useful. Figure 1 shows two
automata, the states of which are equivalence classes of pairs
of regular expressions indicated by a dashed fringe (which
is omitted for singleton classes). The equivalence classes of
automaton (a) are modulo plain ACI normalization, while
those of automaton (b) are modulo a stronger normalization
function, making the automaton smaller. Transitions corre-
spond to pairwise derivatives and doubled margins denote
states for which the associated pairs of regular expressions
are pairwise final. Both automata are the result of our decision

procedure performing a breadth-first exploration starting with
the initially given pair and ignoring states that are in the
equivalence class of already visited states. The absence of
pairs (r, s) for which r is final and s is not final (or vice
versa) proves the equivalence of all pairs in the automaton,
including the pair (a∗, 1 + a ⋅ a∗).

V. MSO ON FINITE WORDS

Logics on finite words consider formulas in the context of a
formal word, with variables representing positions in the word.
In the first-order logic on words a variable always denotes a
single position, while in monadic second-order logic (MSO)
variables come in two flavours: first-order variables for single
positions and second-order variables for finite sets of positions.

A. Syntax and Semantics

MSO formulas are syntactically represented by the recursive
data type αΦ using de Bruijn indices for variable bindings.
Terms of αΦ are generated by the grammar

ϕ = Q am ∣ m1 <m2 ∣ m∈M
∣ ϕ∧ψ ∣ ϕ∨ψ ∣ ¬ϕ
∣ ∃ϕ ∣ ∃∃∃∃∃∃∃∃∃ϕ

where ϕ,ψ ∶∶ αΦ, m,m1,m2,M ∈ N and a ∈ α. Lower-case
variables m,m1,m2 denote first-order variables, M denotes a
second order variable. The atomic formula Q am requires the
letter of the word at the position represented by variable m
to be a; the constructors < and ∈ compare positions; Boolean
operators are interpreted as usual.

The bold existential quantifier ∃∃∃∃∃∃∃∃∃ binds second-order vari-
ables, ∃ binds first-order variables. Occurrences of bound
variables represented as de Bruijn indices refer to their binders
by counting the number of nested existential quantifier be-
tween the binder and the occurrence. For example, the formula
∃(Q a0∧(∃∃∃∃∃∃∃∃∃1∈0)) corresponds to ∃x.(Q a x∧(∃X. x∈X))
when using names. The first 0 in the nameless formula refers to
the outermost first-order quantifier. Inside of the inner second-
order quantifier, index 1 refers to the outermost quantifier and
index 0 to the inner quantifier. The nameless representation
simplifies reasoning by implicitly capturing α-equivalence of
formulas. On the downside, de Bruijn indices are less readable
and must be manipulated with care.

Formulas may have free variables. The functions V1 ∶∶αΦ→
N set and V2 ∶∶ αΦ → N set collect the free first-order and
second-order variables:

V1(Q am) = {m} V2(Q am) = {}
V1(m1 <m2)= {m1,m2} V2(m1 <m2)= {}
V1(m∈M) = {m} V2(m∈M) = {M}
V1(ϕ∧ψ) = V1(ϕ) ∪ V1(ψ) V2(ϕ∧ψ) = V2(ϕ) ∪ V2(ψ)
V1(ϕ∨ψ) = V1(ϕ) ∪ V1(ψ) V2(ϕ∨ψ) = V2(ϕ) ∪ V2(ψ)
V1(¬ϕ) = V1(ϕ) V2(¬ϕ) = V2(ϕ)
V1(∃ϕ) = ⌊V1(ϕ)∖{0}⌋ V2(∃ϕ) = ⌊V2(ϕ)⌋
V1(∃∃∃∃∃∃∃∃∃ϕ) = ⌊V1(ϕ)⌋ V2(∃∃∃∃∃∃∃∃∃ϕ) = ⌊V2(ϕ)∖{0}⌋

5



a∗
1 + a ⋅ a∗

1 ⋅ a∗
0 + 1 ⋅ a∗

0 ⋅ a∗ + 1 ⋅ a∗
0 + 0 ⋅ a∗ + 1 ⋅ a∗

0 ⋅ a∗ + 0 ⋅ a∗ + 1 ⋅ a∗
0 + 0 ⋅ a∗ + 0 ⋅ a∗ + 1 ⋅ a∗

0 ⋅ a∗
0 + 0 ⋅ a∗

0 ⋅ a∗ + 0 ⋅ a∗
0 + 0 ⋅ a∗ + 0 ⋅ a∗

0 ⋅ a∗ + 0 ⋅ a∗ + 0 ⋅ a∗
0 + 0 ⋅ a∗ + 0 ⋅ a∗ + 0 ⋅ a∗

Da

Da

Da ACI

Db

Db

Db

ACI ACI

Da
Db

(a) norm is identity function

1 ⋅ a∗
0 + 1 ⋅ a∗

0 ⋅ a∗ + 1 ⋅ a∗
0 + 0 ⋅ a∗ + 1 ⋅ a∗

a∗
1 + a ⋅ a∗

0 ⋅ a∗
0 + 0 ⋅ a∗

0 ⋅ a∗ + 0 ⋅ a∗
0 + 0 ⋅ a∗ + 0 ⋅ a∗

a∗
a∗

0
0

Da

Da

Db

Db
norm

norm

norm

normDa
Db

(b) norm unfolds 0 + r = r, 0 ⋅ r = 0 and 1 ⋅ r = r

Fig. 1. Checking the equivalence of a∗ and 1 + a ⋅ a∗ for Σn = {a,b}

The notation ⌊X⌋ is shorthand for (λx. x−1)●X, which reverts
the increasing effect of an existential quantifier on previously
bound or free variables. To obtain only free variables, bound
variables are removed when their quantifier is processed, at
which point the bound variable has index 0.

Just as for Π-extended regular expressions, not all formulas
in αΦ are meaningful. Consider 0∈0, where 0 is both a first-
order and a second-order variable. To exclude such formulas,
we define the predicate wfΦ ∶∶ N → αΦ → B as wfΦ

n (ϕ) =
(V1(ϕ)∩V2(ϕ) = {}) ∧ pre_wfΦ

n (ϕ) and call a formula ϕ n-
wellformed if wfΦ

n (ϕ) holds. The recursively defined predicate
pre_wfΦ ∶∶N→ αΦ→B is used for further assumptions on the
structure of n-wellformed formulas, which will simplify our
proofs:

pre_wfΦ

n (Q am) = a ∈ Σ ∧m < n
pre_wfΦ

n (m1 <m2) = m1 < n ∧m2 < n
pre_wfΦ

n (m∈M) = m < n ∧ M < n
pre_wfΦ

n (ϕ∧ψ) = pre_wfΦ

n (ϕ) ∧ pre_wfΦ

n (ψ)
pre_wfΦ

n (ϕ∨ψ) = pre_wfΦ

n (ϕ) ∧ pre_wfΦ

n (ψ)
pre_wfΦ

n (¬ϕ) = pre_wfΦ

n (ϕ)
pre_wfΦ

n (∃ϕ) = pre_wfΦ

n+1(ϕ) ∧ 0 ∈ V1(ϕ) ∧ 0 ∉ V2(ϕ)
pre_wfΦ

n (∃∃∃∃∃∃∃∃∃ϕ) = pre_wfΦ

n+1(ϕ) ∧ 0 ∉ V1(ϕ) ∧ 0 ∈ V2(ϕ)

pre_wfΦ

n (ϕ) ensures that the index of every free variable in
ϕ is below n and the values of type α come from a fixed
alphabet Σ. Note that Σ is really just a fixed set of letters of
type α, independent of any n and is a parameter of our setup.
Moreover, pre_wfΦ checks that bound variables are correctly
used as first-order or second-order with respect to their binders
and excludes formulas with unused binders; unused binders are
obviously superfluous.

An interpretation of an MSO formula is a pair of a word
w ∶∶ α list from Σ

∗ and an assignment I ∶∶ (N+N set) list for
free variables. The latter essentially consists of two functions
with finite domain: one from first-order variables to positions
and the other from second-order variables to sets of positions.
We represent those to functions by a list, once again benefiting

from de Bruijn indices—the value lookup for a variable with
de Bruijn index i corresponds to inspecting the assignment I at
position i, i.e. I[i]. The range of I is a sum type, denoting the
disjoint union of its two argument types. The sum type has two
constructors Inl ∶∶ α→ α+β and Inr ∶∶ β→ α+β, such that for a
first-order variable m there is a position p with I[m]= Inl p and
for a second-order variable M there is a finite set of positions
P with I[M] = Inr P.

An interpretation that satisfies a formula is called a model.
Satisfiablity, denoted by infix ⊧ ∶∶ (N+N set) list→ αΦ→B, is
defined recursively on αΦ. To simplify the notation, the sum
constructors Inl and Inr are stripped implicitly in the definition.

(w, I) ⊧Q am ↔ w[I[m]] = a
(w, I) ⊧m1 <m2↔ I[m1] < I[m2]
(w, I) ⊧m∈M ↔ I[m] ∈ I[M]
(w, I) ⊧ ϕ∧ψ ↔ (w, I) ⊧ ϕ ∧ (w, I) ⊧ ψ
(w, I) ⊧ ϕ∨ψ ↔ (w, I) ⊧ ϕ ∨ (w, I) ⊧ ψ
(w, I) ⊧ ¬ϕ ↔ (w, I) /⊧ ϕ
(w, I) ⊧ ∃ϕ ↔ ∃p ∈ {0, . . . , ∣w∣−1}. (w, Inl p # I) ⊧ ϕ
(w, I) ⊧∃∃∃∃∃∃∃∃∃ϕ ↔ ∃P ⊆ {0, . . . , ∣w∣−1}. (w, Inr P # I) ⊧ ϕ

For the definition to make sense, I must correctly map first-
order variables to positions (i.e. I[m]= Inl p) and second-order
variables to sets of positions (i.e. I[M] = Inr P). Furthermore,
all positions in I should be below the length of the word,
and for technical reasons the word should not be empty. We
formalize these assumptions by the predicate suits ∶∶ αΦ →
α list× (N+N set) list→ B and call an interpretation suitable
for ϕ if suitsϕ(w, I) holds:

suitsϕ(w, I) =
w ≠ [] ∧w ∈ Σ

∗∧
∀ Inl p ∈ set I. p < ∣w∣ ∧
∀Inr P ∈ set I. (∀p ∈ P. p < ∣w∣) ∧
∀m ∈ V1(ϕ) (∃p. I[m] = Inl p) ∧
∀M ∈ V2(ϕ) (∃P. I[M] = Inr P)

6



In a suitable model, positions are restricted by the length
of the word. This is the key difference of our logic com-
pared to WS1S. In WS1S no a priori restrictions on the
variable ranges are made, although all second-order variables
represent finite sets. The subtle difference is illustrated by
the formula ∃∃∃∃∃∃∃∃∃(∀0 ∈ 1), where ∀ϕ is just an abbreviation for
¬∃¬ϕ. In our semantics ∃∃∃∃∃∃∃∃∃(∀0 ∈ 1) is satisfied by all suitable
interpretations—the witness set for the outermost existential
quantifier is for a suitable interpretation (w, I) just the set
{0, . . . , ∣w∣−1}. In contrast, with the semantics of WS1S, there
is no finite set which contains all arbitrarily large positions,
thus ∃∃∃∃∃∃∃∃∃(∀0 ∈ 1) is unsatisfiable. However, both semantics are
equally expressive and deciding both is of nonelementary
complexity. The benefits and drawbacks of the two semantics
are discussed elsewhere [3], [14].

B. Encoding Interpretations as Words

Formulas are equivalent if they have the same set of suitable
models. To relate equivalent formulas with language equiva-
lent regular expressions, the set of suitable models must be
represented as a formal language by encoding interpretations
as words. To simplify the formalization, we choose a very
simple encoding using Boolean vectors. For an interpretation
(w, I), we associate with every position p in the word w a
Boolean vector bs of length ∣I ∣, such that bs[m] = ⊺ iff the mth
variable in I is first-order and its value is p or it is second-
order and its value contains p. For example, for Σ = {a,b} the
interpretation (w, I) = (aba, Inl 0 # Inr {1,2} # Inl 2 # []) can
be written in two dimensions as follows:

a b a
Inl 0 ⊺ � �
Inr {1,2} � ⊺ ⊺
Inl 2 � � ⊺

In the first row, the value ⊺ is placed only in the first column
because the first variable of I is the first-order position 0. In
general, the columns correspond to the Boolean vectors associ-
ated with positions in the word, while every row corresponds to
one variable. For first-order variables there must be exactly one
⊺ per row. The first row encodes the value of the most recently
bound variable. Now, we consider every column as a letter of
a new alphabet, which is the underlying alphabet Σn = Σ×Bn

of regular expressions of Section IV. This transformation
of interpretations into words over Σn is performed by the
function enc ∶∶ α list×(N+N set) list→ (Σ×B list) list; we omit
its obvious definition.

Furthermore, the second parameter π ∶∶ Σn+1 → Σn of our
decision procedure for regular expressions can now be instan-
tiated as the function that maps (a, b # bs) to (a, bs). Thus,
the projection Π operates on words by removing the first row
from words in the language of the body expression, reflecting
the semantics of an existential quantifier.

Below we use a more visually appealing notation for
elements of Σn. E.g. (a,⊺ # � # � # []) is written as

( a
⊺��).

Finally, the language LΦ ∶∶N→ αΦ→ (α×B list) set of an
MSO formula is the set of encodings of its suitable models,
i.e. LΦ

n (ϕ) = {enc(w, I) ∣ suitsϕ(w, I) ∧ ∣I ∣ = n ∧ (w, I) ⊧ ϕ}.

C. From Formulas to Regular Expressions

MSO formulas are translated into regular expressions by
means of the primitive recursive function RE_of ∶∶N→ αΦ→
αRE (see Figure 2). The natural number parameter of RE_of
indicates the number for free variables for the processed for-
mula. The parameter is increased when entering recursively the
scope of an existential quantifier. In general, the abbreviation

⎛
⎜
⎝

X
�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m−1

⎞
⎟
⎠

actually denotes the huge summation

⊕
a∈X

bi∈{⊺,�}
i∈{0,...,m−1,m+1,..,n−1}

( a
b0⋯bm−1 ⊺ bm+1⋯bn−1

).

The intuition behind the translation is demonstrated by
the case Q am. We fix a suitable model (w,I) of Q am.
(w,I) must satisfy w[I[m]] = a, or equivalently the fact
that there exists a Boolean vector bs of length n such that
enc(w, I)[I[m]] = (a, bs) and bs[m] = ⊺. Therefore, the letter
at position I[m] of enc(w, I) is matched by the “middle”
part of RE_ofn(Q am), while the subexpressions ¬0 (which
denotes Σ

∗
n ) match the first I[m] and the last n−I[m] letters

of enc(w, I).
Conversely, if we fix a word from RE_ofn(Q am), it will

be equal to an encoding of an interpretation that satisfies
Q am by a similar argument. However, the interpretation might
be not suitable for Q am. This happens because the regular
expression RE_ofn(Q am) does not capture the distinction
between first-order and second-order variables, such that it
accepts encodings of interpretations that have the value ⊺ more
than once at different positions representing the same first-
order variable. This indicates that the subexpressions ¬0 in
the base cases are not precise enough, but also in the case of
Boolean operators similar issues arise. So instead of tinkering
with the base cases, it is better to separate the generation
a regular expression that encodes models from the one that
encodes suitable interpretations.

To rule out unsuitable interpretations is exactly the purpose
of the ENC ∶∶N→αΦ→αRE function. The regular expression
ENCn(ϕ) (see Figure 2) accepts exactly the encodings of
suitable interpretations (both models and non-models) for ϕ
by ensuring that first-order variables are encoded correctly.

Lemma 9. Let ϕ be an n-wellformed formula. Then
Ln(ENCn(ϕ))∖{[]} = {enc(w, I) ∣ suitsϕ(w, I)∧ ∣I ∣=n}.

Using ENC in every case of the recursive definition of
RE_of is very redundant—it is enough to perform the inter-
section once globally for the entire formula and additionally
for every existential quantifier. Finally, we can establish the
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RE_ofn(Q am) = ¬0 ⋅
⎛
⎜⎜
⎝

{a}
�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m−1

⎞
⎟⎟
⎠
⋅ ¬0

RE_ofn(m1 <m2) = ¬0 ⋅
⎛
⎜⎜⎜
⎝

Σ

�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m1

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m1−1

⎞
⎟⎟⎟
⎠
⋅ ¬0 ⋅

⎛
⎜⎜⎜
⎝

Σ

�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m2

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m2−1

⎞
⎟⎟⎟
⎠
⋅ ¬0

RE_ofn(m∈M) = ¬0 ⋅
⎛
⎜⎜
⎝

Σ

�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
min m M

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

max m M−min m M−1

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−max m M−1

⎞
⎟⎟
⎠
⋅ ¬0

RE_ofn(ϕ∧ψ) = RE_ofn(ϕ) ∩ RE_ofn(ψ)
RE_ofn(ϕ∨ψ) = RE_ofn(ϕ) + RE_ofn(ψ)
RE_ofn(¬ϕ) = ¬RE_ofn(r)
RE_ofn(∃ϕ) = Π(RE_ofn+1(ϕ) ∩ ENCn+1(ϕ))
RE_ofn(∃∃∃∃∃∃∃∃∃ϕ) = Π(RE_ofn+1(ϕ) ∩ ENCn+1(ϕ))

ENCn(ϕ) = ⋂
m∈V1(ϕ)

⎛
⎜⎜
⎝

Σ

�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m

� �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m−1

⎞
⎟⎟
⎠

∗

⋅
⎛
⎜⎜
⎝

Σ

�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m

⊺ �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m−1

⎞
⎟⎟
⎠
⋅
⎛
⎜⎜
⎝

Σ

�/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

m

� �/⊺⋯�/⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n−m−1

⎞
⎟⎟
⎠

∗

Fig. 2. Definition of RE_of and ENC

language correspondence between formulas and generated
regular expressions.

Theorem 10. Let ϕ be an n-wellformed formula. Then
LΦ

n (ϕ) =Ln(RE_ofn(ϕ) ∩ ENCn(ϕ))∖{[]}.

The proof is by structural induction on ϕ. Above we have
seen the argument for the base case Q am, other base cases
follow similarly. The cases ∃ϕ and ∃∃∃∃∃∃∃∃∃ϕ follow easily from the
semantics of Π given by our concrete instantiation for π and Σn
and the induction hypothesis. The most interesting cases are,
somehow unexpectedly, those for Boolean operators. Although
the definitions are purely structural, sets of encodings of
models must be composed or, even worse, complemented in
the inductive steps. The key property required here is that
enc does not collapse models and non-models: two different
suitable interpretations for a formula—one being a model, the
other being a non-model—are encoded into different words.
This is again established by structural induction on formulas.

Lemma 11. Let (w1, I1) and (w2, I2) be two suitable inter-
pretations for ϕ. Further, assume enc(w1, I1) = enc(w2, I2).
Then (w1, I1) ⊧ ϕ↔ (w2, I2) ⊧ ϕ.

D. Deciding Language Equivalence of Formulas

The algorithm eqvΦ ∶∶N→ αΦ→ αΦ→ B that decides lan-
guage equivalence of MSO formulas checks wellformedness
of the input formulas, translates the formulas into regular

expressions and lets eqvRE do the work:

eqvΦ
n ϕ ψ =

wfΦ

n (ϕ∨ψ) ∧
eqvREn (RE_ofn(ϕ) + 1) (RE_ofn(ψ) + 1)

Note that wellformedness is checked on the disjunction of both
formulas to ensure that they agree on free variables (i.e. no
first-order free variable of ϕ is used as a second-order free
variable in ψ and vice versa). Further, we add the empty word
into both regular expression. This is allowed, since [] is not
a valid encoding of an interpretation, and necessary because
Theorem 10 does not give us any information whether the
empty word is contained in the output of RE_of or not.

Termination of eqvRE is ensured by Theorem 6 and the
definition principle of primitive recursion for wfΦ and RE_of.
Soundness and completeness follow easily from Theorems 7,
8 and 10.

Theorem 12 (Soundness). Let ϕ and ψ be MSO formulas such
that eqvΦ

n ϕ ψ. Then LΦ
n (ϕ) =LΦ

n (ψ).

Theorem 13 (Completeness). Let ϕ∨ψ be an n-wellformed
MSO formula and assume LΦ

n (ϕ) =Ln(ψ). Then eqvΦ
n ϕ ψ.

VI. APPLICATION: FINITE-WORD LTL

We want to execute the code generated by Isabelle/HOL
for our decision procedure on some larger examples. It is
helpful to introduce some syntactic abbreviations. We define
the unsatisfiable formula ��� as ∃0<0 and the valid formula ⊺⊺⊺
as ¬���. Now, checking that a formula is a valid amounts to

8



checking its equivalence to ⊺⊺⊺. Implication ϕ→ ψ is defined
as (¬ϕ)∨ψ and universal quantification ∀ϕ as before as
¬∃¬ϕ. Next, we introduce temporal logical operators always
◻P ∶∶ N → αΦ and eventually ◇P ∶∶ N → αΦ depending on
P ∶∶ N → αΦ—a formula parameterized by a single variable
indicating the time. The operators have their usual meaning
except that with the given MSO semantics the time variable
ranges over a fixed set determined by the interpretation.
Additionally, we lift the disjunction and implication to time-
parameterized formulas.

◻P t = ∀(¬ t+1<0→P 0)
◇P t = ∃(¬ t+1<0∧P 0)
(P⇒ Q) t = P t→ Q t
(P ∨ Q) t = P t∨Q t

Note that t+1 has nothing to do with the next time step. It is
just the lifting of the de Bruijn index under a single quantifier.

Further, formulas of linear temporal logical contain atomic
predicates for which the interpretation must specify at which
points in time they are true. This information can be encoded
in two ways, which we compare in the following.

The first possibility is to encode atomic predicates in the
word of the interpretation. This is done by identifying Σ with
the powerset P of atomic predicates. For every point in time,
that is for every position in the word, the letter is the set
of predicates that are true at this point. Using this encoding
we can prove the validity of the following closed formulas
over the alphabet P{P} = {{P}, {}} automatically within a
few milliseconds.

∀(◻(Q{P})⇒◇(Q{P})) 0
∀(◻(Q{P})⇒ ◻ ◇(Q{P})) 0

Alternatively, a free second-order variable can be used to
encode an atomic predicates directly. The variable denotes the
set of points in time for which the atomic predicate holds. The
alphabet Σ can then be trivial, i.e. Σ = {a} for an arbitrary a.
Using this encoding the above two formulas correspond to

∀(◻(λt. t ∈2)⇒◇(λt. t ∈2)) 0
∀(◻(λt. t ∈2)⇒ ◻ ◇(λt. t ∈3)) 0

Both formulas have one free second-order variable 0 that is
lifted when passing two or three quantifiers. The generated al-
gorithm shows the equivalence to ⊺⊺⊺ again within milliseconds.

In order to explore the limits of our decision procedure,
formulas over more atomic predicates are required. Therefore,
we consider the distributivity theorems of ◻ over implication
for both representations of atomic predicates as shown in
Figure 3. When the number of predicates n is increased, the
size of ϕn grows exponentially: to express that a predicate P
holds at some position we need the disjunction of all atoms
containing P. In contrast, the size of ψn grows linearly. The
complexity of ψn is hidden in its encoding—the latter also
grows exponentially with increasing n. The running times of
the decision procedure are summarized in Figure 4. Thereby,
ψ1, ψ2 and ψ3 were processed over Σ = {a}, ϕ1 was processed

over Σ = P{P}, ϕ2 over Σ = P{P1,P2} and finally ϕ3 over
Σ = P{P1,P2,P3}. Figure 4 also shows the sizes of the
generated regular expressions. Both size and sizelen count the
constructors in a regular expression. The difference is that the
size of an atom is 1 whereas the sizelen of an atom is the length
of its Boolean vector.

The attentive reader will have noticed that we have said
nothing about how sets are represented in the code generated
from our mathematical definitions. We have chosen an existing
verified red–black tree implementation for our measurements.
Isabelle’s code generator supports the transparent replacement
of sets by some verified implementation.

The performance of our automatically generated code may
appear disappointing but that would be a misunderstanding of
our intentions. We see our work primarily as a theoretical
contribution that may pave the way towards verified and
efficient decision procedures. As a bonus, the generated code
is applicable to small examples. In the context of interactive
theorem proving, this is primarily what one encounters: small
formulas. Any automation is welcome here because it saves the
user time and effort. Automatic verification of larger systems is
the domain of highly tuned implementations such as MONA.

VII. CONCLUSION

We have formalized an algorithm that decides equivalence
of MSO formulas in Isabelle/HOL. The formalization comes
with proofs of termination, soundness and completeness. The
algorithm operates by translating formulas into Π-extended
regular expressions and deciding the language equivalence
of the latter using Brzozowski derivatives. Our formalized
specification of the algorithm is executable—Isabelle/HOL
generates code for it in different functional target languages
automatically. The development amounts to roughly 3700 lines
of specifications and proofs, of which 2100 lines are devoted to
deciding equivalence of Π-extended regular expressions. The
formal scripts are publicly available [22].

Our work can be continued in two dimensions. First, the
algorithm is not optimized. Especially the encoding of inter-
pretations as Boolean vectors leaves room for improvement.

Second, several related decidable logics can be formalized
and verified using similar technology. The closest relative of
MSO on finite words is WS1S. We expect that the modifi-
cations of our algorithm required to support WS1S, notably
the translation of formulas into regular expressions, are minor.
However, the proofs will also need some adjustments. Another
related logic is MSO on infinite words (also called S1S).
As opposed to finite words there is no semantic difference
between S1S and MSO on infinite words. S1S formulas
can be translated into ω-regular expressions representing ω-
regular languages. A verified decision procedure for deciding
equivalence of ω-regular expressions without constructing ω-
automata is an interesting challenge. An even more distant
goal is to move from words to trees (or even from ω-words to
ω-trees) and decide equivalence of MSO formulas on (in)finite
trees (or alternatively (W)S2S formulas) by translating them
into (ω-)regular tree expressions.
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ϕ1 = ∀(◻(Q{P})⇒ ◻(Q{P})) 0
ϕ2 = ∀(◻(Q{P1}∨ Q{P1, P2}⇒Q{P2}∨ Q{P1, P2})⇒ ◻(Q{P1}∨ Q{P1, P2})⇒ ◻(Q{P2}∨ Q{P1, P2})) 0
ϕ3 = ∀(◻(Q{P1}∨ Q{P1, P2}∨ Q{P1, P3}∨ Q{P1, P2, P3}⇒

Q{P2}∨ Q{P1, P2}∨ Q{P2, P3}∨ Q{P1, P2, P3}⇒Q{P3}∨ Q{P1, P3}∨ Q{P2, P3}∨ Q{P1, P2, P3})⇒
◻(Q{P1}∨ Q{P1, P2}∨ Q{P1, P3}∨ Q{P1, P2, P3})⇒
◻(Q{P2}∨ Q{P1, P2}∨ Q{P2, P3}∨ Q{P1, P2, P3})⇒
◻(Q{P3}∨ Q{P1, P3}∨ Q{P2, P3}∨ Q{P1, P2, P3})) 0

ψ1 = ∀(◻(λt. t ∈2)⇒ ◻(λt. t ∈2)) 0
ψ2 = ∀(◻(λt. t ∈2→ t ∈3)⇒ ◻(λt. t ∈2)⇒ ◻(λt. t ∈3)) 0
ψ3 = ∀(◻(λt. t ∈2→ t ∈3→ t ∈4)⇒ ◻(λt. t ∈2)⇒ ◻(λt. t ∈3)⇒ ◻(λt. t ∈4)) 0

Fig. 3. Definition of ϕn and ψn

Time to prove ϕn Time to prove ψn size (RE_of0(ϕn)) size (RE_ofn(ψn)) sizelen (RE_of0(ϕn)) sizelen (RE_ofn(ψn))
n=1 2ms 2ms 262 262 330 404
n=2 2s 2s 741 960 949 1370
n=3 81min 44min 1920 1836 2480 4148

Fig. 4. Comparison of ϕn and ψn
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