An Operational Semantics and Type Safety Proof
for Multiple Inheritance in C++

Daniel Wasserrab Tobias Nipkow Gregor Snelting Frank Tip
Universitt Passau Technische Universit Universitt Passau IBM T.J. Watson Research
wasserra@fmi.uni- Munchen snelting@fmi.uni- Center
passau.de nipkow@in.tum.de passau.de ftip@us.ibm.com
Abstract terms of implementation-level constructs such as v-tables. We are

We present an operational semantics and type safety proof foronly aware of a few formal treatments—and of no operational

multiple inheritance in C++. The semantics models the behavior Semantics—for C++-like languages with shared and repeated mul-
of method calls, field accesses, and two forms of casts in C++ tiple inheritance. The subobject model by Rossie and Friedman

; : -~ [20], upon which our work is based, formalizes the object model of
and machine-checked i 1saballe/HOL, Our Somantics enables one - Rossie and Friedman defined the behavior of method cals and
for the first time, to understand the behavior of operations on C++ Member access using this model, but their definitions do not follow
class hierarchies without referring to implementation-level artifacts C++ behavior premsely, they do not consider th_e behavior of casts,
such as virtual function tables. Moreover, it can—as the semantics @"d they do not provide an operational semantics. In 1996, Rossie,
is executable—act as a reference for compilers, and it can form Friedman, and Wanc]l] stated that “In fact, a provably-safe static
the basis for more advanced correctness proofs of, e.g., automatedYP€ system -] IS an open prqblem » and to our knowledge this
program transformations. The paper presents the semantics and@"©Plém has remained open until today.
type safety proof, and a discussion of the many subtleties that we The. CoreC++ language studied n th|s paper features all t‘he
encountered in modeling the intricate multiple inheritance model €SSential elements of the C++ multiple inheritance model (while
of C++. omitting many features not relevant to operations involving class

hierarchies). The semantics of CoreC++ were designed to mirror

1. Introduction those of C++ to the maximum extent possible. In preyious versions

. of the semantics3g], we explored a number of variations, and we
We present a operational semantics and type safety proof for thewill briefly discuss these if8.
multiple inheritance model of C++ in all its complexity, includ- Our interest in formalizing the semantics of multiple inheritance
ing both repeated and shared (virtual) inheritance. This semanticswas motivated by previous work by two of the present authors on:
enables one—for the first time!—to fully understand and express (i) restructuring class hierarchies in order to reduce object size at
the behavior of operations such as method calls, field accesses, andun-time 3], (ii) composition of class hierarchies in the context of
casts in C++ programs without referring to compiler data structures an approach for aspect-orientatidd], and (jii) refactoring class

such as virtual function tables (v-table&y]. hierarchies in order to improve their desig?b] 23], In each of
Type safety is a language property which can be summarized by these projects, class hierarchies geaeratedmultiple inheritance
the famous slogan “Well-typed programs cannot go wrorig].[may arise naturally, and additional program transformations are

Cardelli's definition of type safety6] demands that no untrapped then used to replace multiple inheritance by a combination of single
errors may occur (although controlled exceptions are allowed). The inheritance and delegation. We plan to exploit our formal semantics
type safety property that we prove is the fact that the execution of for a correctness proof of these transformations.

a well-typed, terminating program will deliver a result of the ex- In summary, this paper makes the following contributions:
pected type, or end with an exception. The semantics and proof are

formalized and machine-checked using the Isabelle/HOL theorem

prover [14].) o) e We present a formal semantics and machine-checked type
One of the main sources of complexity in C++ is a complex safety proof for multiple inheritance in C++. This enables one,

form of multiple inheritance, in which a combination of shared for the first time, to understand and express the behavior of

(“virtual”) and repeated (“nonvirtual”) inheritance is permitted. Be- operations involving C++ class hierarchies without referring to

cause of this complexity, the behavior of operations on C++ class compiler data structures.

hierarchies has traditionally been defined informalig]{ and in ¢ We discuss some subtle ambiguities concerning the behavior of

member access and method calls in C++ that were uncovered in
the course of designing the semantics.

¢ By formalizing the complex behavior of C++ multiple inheri-
Permission to make digital or hard copies of all or part of this work for personal or tance, we extend the appllcablllty of formal semantics and the-

classroom use is granted without fee provided that copies are not made or distributed ~ OF€M prover technology to a new level of complexity.

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. . .
Thus the message to language semanticists is that the much
Copyright@© ACM [to be supplied]. . . $5.00. maligned C++ system of multiple inheritance contains a perfectly
sound core.

2. Multiple inheritance defining a subobject type as a p&, D) would be insufficient,
because, as we have seen in Higa C-object may contain multi-

2.1 Anintuitive introduction to subobjects A . X
) ple D-components in the presence of repeated multiple inheritance.

C++ features botmonvirtual (or repeated andvirtual (or shareq Therefore, a subobject is identified by a pif;, C's], whereC de-
multiple inheritance. The difference between the two flavors of npotes the type of the “complete object”, and where plagh C's
inheritance is subtle, and only arises in situations where a classconsists of a sequence of class narfigs --- - C, that encodes

Y indirectly inherits from the same class via more than one the transitive inheritance relation betweéh and C,,. There are
path in the hierarchy. In such cas&swill contain oneor multiple two cases here: Foepeatedsubobjects we have that, = C, and
X-“subobjects”, depending on the kind of inheritance that is used. for sharedsubobjects, we have thét; is the least derived (most
More precisely, if only shared inheritance is us&dwill contain general) shared base class(@fthat containg’,,. This scheme is

a single, shared(-subobject, and if only repeated inheritance is syfficient because shared subobjects are unique within an object
used, the number oK -subobjects inY” is equal toV, where N (i.e. there can be at most oskaredsubobject of typeS within

is the number of distinct paths frodX to Y in the hierarchy. any object). More formally, for a given clagg, the set of its sub-

If a combination of shared and repeated inheritance is used, thegbjects, along with a containment ordering on these subobjects, is
number of X -subobjects in ar¥-object will be betweenl and inductively defined as follows:

N (a more precise discussion follows). C++ hierarchies with only i) N
single inheritance (the distinction between repeated and shared(i) [C,C]is the subobject that represents the “full*object.
inheritance is irrelevant in this case) are semantically equivalent (i) if S1 = [C, Cs.X] is a subobject for clas§' whereC's is any

to Java class hierarchies. sequence of class names, akidshared-inherits fronY’, then
Fig. 1(a) shows a small C++ class hierarchy. In these and subse- S, = [C, Y] is a subobject for clas§' that is accessible from

quent figures, a solid arrow from clagso classD denotes the fact S1 through a pointer.

that D repeated-inherits fror®', and a dashed arrow from class (iii) if S; = [C,Cs.X] is a subobject for class' whereC's is any

to classD denotes the fact thad shared-inherits fron€'. Here, sequence of class names, aﬁdepea’[ed_inherits from’ then

and in subsequent examples, all methods are assumedvio be S, = [C,Cs.X.Y] is a subobject for clas€' that is directly

tual (i.e. dynamically dispatched), and all classes and inheritance contained within subobjed; .
relations are assumed to peblic .) .)

In Fig. 1(a), all inheritance is repeated. Since cl&&stom Fig. 1(c) and Fig.2(c) show subobject graphgor the class hi-
repeated-inherits from classéeft and Right , a Bottom - erarchies of Figl and Fig.2, respectively. Here, an arrow from
object has one subobject of each of the types andRight . As subobijectS to subobjectS’ indicates thatS’ is directly contained
Left andRight each repeated-inherit froffop, (sub)objects of ~ in S or thatS has a pointer leading t§". For a given subobject
these types contain distinct subobjects of tfjsp. Hence, forthe S = [C, C's.D], we callC' thedynamic classf subobjectS and D
C++ hierarchy of Figl(a), an object of typ8ottom containswo thestatic clasof subobjectS. Associated with each subobject are
distinct subobject®f type Top. Fig. 1(b) shows the layout used the members that occur in its static class. Hence, if an object con-
for aBottom object by a typical compiler, given the hierarchy of tains multiple subobjects with the same static class, it will contain
Fig. 1(a). Each subobject has local copies of the subobjects that it Multiple copies of members declared in that class. For example, the
contains, hence it is possible to lay out the object in a contiguous Subobject graph of Fidl(c) shows two subobjects with static class

block of memory without indirections. Top, each of which has distinct fieldsandy .
Fig. 2(a) shows a similar C++ class hierarchy in which the in- Intuitively, a subobject's dynamic class represents the type of
heritance betweebeft andTop and betweeRight andTop is the “full object” and is used to resolve dynamically dispatched

shared Again, aBottom -object contains one subobject of each of Method calls. A subobject’s static class represents the declared type
the typed_eft andRight , due to the use of repeated inheritance. ©Of @ variable that points to an (subobject of the full) object and is

However, sinceLeft andRight both shared-inherit frorfop, used to resolve field accesses. In this paper, we use the Rossie-
the Top-subobject contained in tHeeft -subobject isharedwith Friedman subobject model to define the behavior of operations
the one contained in thRight -subobject. Hence, for this hierar- ~ such as method calls and casts as functions from subobjects to
chy, aBottom -object will containa single subobjeatf type Top. subobjects. As we shall see shortly, it will be necessary in our

In general, a shared subobject may be shared by arbitrarily manysemantics to maintain full subobject information even for “static”
subobjects, and requires an object layout with indirections (typi- OPerations such as casts and field accesses.

cally in the form ofvirtual-base pointers[27, p.266]". Fig. 2(b) ~ Multiple inheritance can easily lead to situations where mul-
shows a typical object layout for an object of tyPettom given tiple members with the same name are visible. In C++, many
the hierarchy of Fig2(a). Observe, that theeft -subobject and member accesses that are seemingly ambiguous are resolved us-
the Right -subobject each contain a pointer to the single shared ing the notion ofdominance[28]. A memberm in subobject

Top-subobiject. S’ dominatesa memberm in subobjectS if S is contained in
S’ (i.e. S’ occurs belowsS in the subobject graph). Member ac-
2.2 The Rossie-Friedman Subobject Model cesses are resolved by selecting the unique dominant member

m if it exists; otherwise an access is ambigu%qur exam-
ple, in Fig. 2, a Bottom -object sees two declarations ffj ,
one in classRight and one in clasSop. Thus a call(new
Bottom())->f() seems ambiguous. But it is not, because in
the subobject graph faottom shown in Fig.2(c), the definition
off() in[Bottom ,Bottom .Right]dominates the one irBot-
tom,Top]. On the other hand, the subobject graph in E{g) con-

Rossie and Friedmar2()] proposed a subobject model for C++-
style inheritance, and used that model to formalize the behavior of
method calls and field accesses. Informally, one can think of the
Rossie-Friedman model as an abstract representation of object lay
out. Intuitively, asubobject identifies a component of typB that

is embedded within a complete object of tygeHowever, simply

1 An alternative implementation mechanism is to store the offsets to shared
subobjects in vtables. tified by such labels. In retrospect, the term “subobject label” would have
2 |n this paper, we follow the terminology o2{] and use the term “sub- been better terminology for the former concept.

object” to refer both to the label that uniquely identifies a component of an 3 In some cases, C++ uses the static class of the receiver for further
object type, as well as to components within concrete objects that are iden-disambiguation. This will be discussed shortly.

class Top { int x, y; ... }

class Left : Top { ... };

class Right : Top { inty; .. }

class Bottom : Left, Right { int x; ... };

‘ [Bottom,Bottom.Left.Top]‘ Xy ‘[Bottom,Bottom.Right.Top]‘ Xy

Top Xy Top| [Bottom,Bottom.Right.Top] A A
Right | [Bottom,Bottom.Right] ‘ [Bottom,Bottom.Left] ‘ ‘ [Bottom,Bottom.Right] ‘y
‘ Left ‘ ‘ Riqht‘y Top| [Bottom,Bottom.Left.Top] v Y
Left | [Bottom,Bottom.Left]
[Bottom,Bottom] X
Bottom| x Bottom | [Bottom,Bottom] :

A B: subobject A directly contains subobject B
A — B:Bis repeated subclass of A or a pointer to subobject B

(a) (W) (©)

Figure 1. The repeated diamond

class Top { void f) { ... }; ... }

class Left : virtual Top { ... }

class Right : virtual Top { void f) { ... }; ... }
class Bottom : Left, Right { ... };

[Bottom, Top] £()
\Ld ~
Top £() i .
L N Top [Bottom, Top]
2 X j [Bottom,Bottom.Left] ‘ ‘ [Bottom,Bottom.Right] £()
‘ Left ‘ ‘ Right‘ £0) Right [Bottom,Bottom.Right] ~ R
Left [Bottom,Bottom.Left] -
Bottom Bottom [Bottom,Bottom] [Bottom,Bottom]
A—= B:B is repeated subclass of A A= B: subobject A directly contains subobject B
A-->= B:Bis shared subclass of A or a pointer to subobject B
(@) (b) ©
Figure 2. The shared diamond
tains three definitions of in [Bottom ,Bottom .Right], [Bot- tween unrelated types. However, a subtle limitation existdyA
tom ,Bottom .Right .Top], and Bottom ,Bottom .Left .Top]. namic _cast is statically incorrect when applied to an expression
As there is no unique dominant definitionytere, a field access whose declared type does not declare virtual methods.
(new Bottom())->y is ambiguous. In the semantics, we implemented two different casting opera-
) tors: a static type safe casting operator analogousitatic _cast
2.3 CastsinC++ and a generalization otynamic _cast that is not restricted to

C++ has three cast operators for traversing class hierarchies, eact¢asting types with declared virtual methods. It would be simple

of which has significant limitatioffs Most commonly used are so- t0 add this restriction to our type system but this would weaken

called C-style casts. C-style casts may be used to cast between arbiour type soundness result, which is completely independent of this

trary unrelated types, although some static checking is performed matter.

on up-casts (e.g., a C-style up-cast is statically rejected if the re-

ceiver’s static type does not contain a unique subobject whose static2 4 Examples

class is the type being casted to), but no runtime checks. C-style

casts cannot be used to down-cast along a shared inheritance relave will now discuss several examples to illustrate the subtleties

tion, as it is not possible to “go back” along the indirection pointers that arise in the C++ inheritance model.

in the object. When used incorrectly, C-style casts may cause run- Example 1Dynamic dispatch behavior can be counterintuitive

time errors. in the presence of multiple inheritance. One might expect a method
Thestatic _cast operator only performs compile-time checks call always to dispatch to a me_thod definit_ion in a s_uperclass or

(e.g., to ensure that a unique subobject of the target type exists) andsubclass of the type of the receiver expression. Consider, however,

disallows casting between unrelated typstatic _cast cannot the “shared diamond” example of Fig, where a method() is
be used to down-cast along a shared inheritance relation. Whendefined in classeRight andTop. Now assume that the following
used incorrectlystatic _cast may cause run-time errors. C++ code is executed (note the implicit up-castLeft in the

Thedynamic _cast operator is the recommended cast oper- assignment):
ator in C++. It has the desirable property that failing casts result .] .
in controlled exceptions (when the target of the cast is a reference) ~ Left* b = new Bottom(); b->f();
or the special valu®dlULL (when the target is a pointer). Unlike . . B
the previous two operators, down-casting along shared inheritance©N€ Might expect the method call to dispatchrap:f() . But

relations is allowed, andynamic _cast may be used to castbe- [N fact it dispatches td() in classRight , which is neither a
superclass nor a subclassladft . The reason is that up-casts do

4 The remaining two cast operators in Cénst _cast andreinter- not switch off dynamic dispatch, which is based on the receiver
pret _cast are irrelevant for the issues studied in this paper. object’s dynamic class. The dynamic classhafemainsBottom

class
class
class
class
class

{ ..
{ void f(); }
{3

: AB { void f(); }
: B,C { void f(); }

mooOw>

B* b;

if (...)
b =

else

= new E();
b->f();

Then:

this—pointer:
after offset adjustment for f{)

delta—values:

start Call f{) "

T | A vpur—r &Dif n A&D vtable
B vptr— — delta(B)| B vtable
D
Else:
start Call f{)
RN delta—values:
7

B&E vtable

v B vptr—| &E:f

- C vptr—p| &E:f | — delta(C)| C vtable

after offset
adjustment for f{) E

(b)

Figure 3. C++ fragment demonstrating dynamically varying sub-
object context

after the cast, and sinédight::f()
former is called.

dominatestop::f() , the

keep track of some additional information to determine the cast that
must be performed.

In a typical C++ implementation, a cast actually implies chang-
ing the pointer value in the presence of multiple inheritance, as is
illustrated in Fig.3(b). The up-cast fronD to B (then-case, upper
part of Fig.3(b)) is implemented by adding the offsétita(B) of
the[D,D.B] -subobject within thé object to the pointer to thB
object. Afterwards, the pointer points to tfi2,D.B] -subobject.

As we discussed, the subsequent ¢alf() requires that the
pointer be down-casted D again. This cast is implemented by
adding the negative offsetdelta(B) of the[D,D.B] -subobjectto
the pointer. The else-case (lower part of Ffh)) is analogous, but
involves a different offset, which happens to be 0. In other words,
the offsets in the then- and else-cases are different, and we do not
know until run-time which offset has to be used. To this end, C++
compilers typically extend the virtual function table (vtabl2y][
with “delta” values, that, for each vtable entry, record the offset
that has to be added to thi@is -pointer in order to ensure that it
points to the correct subobject after the cast (B{b), left part)®

Our semantics correctly captures the information needed for
performing casts, without referring to compiler data structures such
as vtable entries and offsets.

Example 3.The following example shows how C++ resolves
ambiguities by exploiting static types. In the “repeated diamond”
of Fig. 1, let us assume that we have declared a mefflod in
classTop, and execute the following code:

Left* b = new Bottom(); b->f();

Note that the assignment performs an implicit up-cast to type
Left , and that the method call is statically correct because a single
definition off() is visible.

However, at run-time the dynamic class of the subobject
[Bottom ,Bottom .Left] associated witlp is used to resolve the
dynamic dispatch. The dynamic classhofs Bottom , andb has
two Top subobjects containinf (andx). As neither definition of
f() dominates the other, the call t>f() appears to be am-
biguous.

Note that the code fdr exists only once, but this code will be
called with an ambiguouthis -pointer at run-time: is it the one
pointing to the Bottom , Bottom.Left.Top] subobject, or the
one pointing to theBottom ,Bottom.Right.Top] subobject?

This makes sense from an application viewpoint: Imagine the Each of these subobject has its own fieldaind these&'s may have

top class to be a “Window”, the left class to be a “Window with
menu”, the right class to be a “Window with border”, the bottom
class to be a “Window with border and menu”, dfjd to compute

the available window space. Then, a “Window with border and gnqg generate a unique vtable entry ftf)

different values at run-time when referencedft)y , leading to
ambiguous program behavior.

C++ uses the static type df to resolve the ambiguity
. As b’s static

menu” object which is casted to “Window with menu” pretends type is Left , the “delta” part of the vtable entry will cause
not to have a border anymore (border methods cannot be called).the dynamic object of typeBottom (and thus thethis -

But for the area computation, the hidden border must be taken into pointer) to be cast ta§ottom ,Bottom.Left. Top

account, thu§) from “Window with border” must be called.

Example 2The next example illustrates the need to track some

], andnotto
[Bottom ,Bottom.Right.Top .
While this may seem to be a “natural” way to resolve the ambi-

subobject information at run-time, and how this complicates the guity, it makes the result of dynamic dispatch—which, intuitively,

semantics. Consider the program fragment in Bi@), whereb
points to aB-subobject. This subobject occurs in two different
“contexts”, namely either as[®, D.B] subobject (if the then-
case of théf statement is executed), or as[& E.B] subob-

is basedsolelyon an object'sdynamictype—additionally depen-
dent on the object’s static type. During the evolution of our seman-
tics, for a long time we considered this a flaw in the design of C++,
and our first semantic8§)] (for a language then called C+) did not

ject (if the else-case is executed). Note that executing the assign-resolve the ambiguity using the static type, but threw an exception

mentsb = new D() andb = new E() involves an implicit
up-cast to typd. Depending on the context, the chibf() will
dispatch toD::f() orE:f() . Now, executing the body of this
f() involves animplicit assignment bfto itsthis pointer. Since
the static type ob is B, and the static type dhis is the class con-
taining its method, an implicit down-cast (or to E, depending

instead. This viewpoint was inspired by Rossie and Friedman, who
also considered this situation to be ambiguous. Now we stick ex-
actly to C++, even though this makes the semantics more complex
(see discussion i8).

on the context) is needed. At compile time it is not known which 5 an alternative to delta entries in vtables are so-called “trampolines”, which
cast will happen at run-time, which implies that the compiler must use additional machine code for pointer adjustment.

Example 4C++ allows method overriding withovariant(i.e.

Pairs come with the two projection functiorfs :: ‘a x 'b = ‘a

more specific) return types. Unrestricted covariance can howeverandsnd :: a x ‘b = 'b. We identify tuples with pairs nested to the

lead to ambiguities. In the context of the repeated diamond of
Fig. 1, consider:

class A { Top* f(); }
class B : A { Bottom* f(); } //not allowed

A* a = new B();
Top* t = a->f();

Statically, everything seems fine: because the tyeisfA, the
type ofa->f() is Top. However, if we allowed the redefinition
of f() , atrun-timea->f() evaluates to 8ottom object. C++
implicitly casts to the return type of the statically selected method
(which would beTop); but this cast is ambiguous, aBattom
object has two differentop subobjects in the repeated diamond.
Hence this redefinition is statically incorrect. C++ requinesque
covarianceif the return type of the statically selected method’is
and the return type of the dynamically selected on®,ishen there
must exist a unique path froi back toC'.

Example 5.C++ does not allow method overriding witton-

right: (a, b, ¢) is identical to(a, (b, ¢)) and’a x 'b x ’c is identical
to’a x ('b x ‘c).

Setqtype ‘a set) follow the usual mathematical convention.
Lists(type ‘a list) come with the empty ligf, the infix construc-
tor -, the infix@ that appends two lists, and the conversion function
set from lists to sets. Variable names ending in “s” usually stand for
lists and|xs| is the length ofks. The standard functiomap, which

maps a function to every element in a list, is also available.
Function updates defined as follows:
f(a:=b)=Xx.ifx =athen belse fx
wheref :: ‘a=-'b anda :: ‘a andb :: 'b.
datatype ‘a option = None | Some 'a
adjoins a new elementone to a type’a. All existing elements
in type ‘a are also in‘a option, but are prefixed bySome. For
succinctness we writga | instead ofSome a. Hencebool option has
the valueq True |, | False | and None.
Partial functionsare modeled as functions of type= b option,
where None represents undefinedness and = |y| meansx is
mapped toy. Instead of’a = ’b option we write ‘a — 'b, call

travariant (i.e. less specific) parameter types, and one reason for such functionsmaps and abbreviate(x:=|y]) to f(x — y). The

this is again the possibility of ambiguities. In the context of the
repeated diamond of Fid, consider:

class A { void f(Left* I); }

class B : A { void f(Top* t); } //no redefinition
/lin C++!

A* a = new B();

a->f(new Bottom());

Here, the actual parameter must be cast fRwttom to Top,
but again this cast is ambiguous.

latter notation extends to list&([x1,. . .,xm] [=] [¥1,. - -,yn]) Mea@Ns
f(x1—y1)...(xs—y;), wherei is the minimum ofm andn. The
notation works for arbitrary list expressions on both sideg-¢f
not just enumerations. Multiple updates likg—y)(xs[—]ys) can
be written asf(x — y, xs [—] ys). The mapAx. None is written
empty, andempty(...), where... are updates, abbreviates|to.].
For example empty(x—y, xs[—]ys) becomegx — y, xs [—] ys].
The domain of a map is defined @&m m = {a | m a # None}.
Functionmap-of turns an list of pairs into a map:

map-of [| = empty

Clearly, the semantics of method calls, field accesses, and castsnap-of (p-ps) = map-of péfst p— snd p
are quite complicated in the presence of shared and repeated mul-

tiple inheritance. Typical C++ compilers rely on implementation-

3.2 Names, paths, and base classes

level artifacts such as v-tables and subobject offsets to define theType cname is the (HOL) type of class names. The (HOL) variables

behavior of these constructs. We will now present a formaliza-

¢ andD will denote class names;s andDs are paths. We introduce

tion that relies solely on subobjects and paths, which enables usthe type abbreviation

to demonstrate type-safety.

3. Formalization

Our semantics builds on the multiple inheritance calculus devel-
oped by Rossie and FriedmaB0], but goes well beyond that

work by providing an executable semantics and a type-safety proof.

path = cname list

Programs are denoted lpy For the moment we do not need to
know what programs look like. Instead we assume the following
predicates describing the class structure of a program:

e P C <r D meansD is a direct repeated base classcof

Rossie and Friedman merely provide the subobject model but no e p+ ¢ <5 P meansD is a direct shared base classof

programming language, they do not model casts and their notion o L«
of method dispatch does not model C++ precisely (see Example 3 T

above).
The starting point for our formal semantics was Jird][a
model of a Java-like language defined in higher-order logic (HOL)

meang<g U <g)*.
e js-class P C means clasg is defined inp.

3.3 Subobjects

in the theorem prover Isabelle/HOL. However, because of the many We slightly change the appearance of subobjects in comparison
intricacies of C++, CoreC++ has really outgrown its parent. As an With Rossie-Friedman style: we use a tuple with a class and a
indicator for this see the fact that the size of the formal specification Path component where a path is represented as a list of classes. So
and associated proofs more than doubled. eg.,a Ros_5|e-Fr|edman subobjfnttom,Bottom. Left] is
Our meta-language HOL conforms largely to everyday mathe- translated int¢Bottom,[Bottom, Left]) .
matical notation. This section introduces further non-standard no- _ The subobject definitions are parameterized by a progbam
tation and in particular a few basic data types with their primitive First we defineSubobjs P, the subobjects whose path consists only
operations. of repeated inheritance relations:
is-class P C

(C, [C]) € Subobjsr P
PHC=<rD (D, Cs) € Subobjsg P

(C, C-Cs) € Subobjs P

3.1 Basic notation — The meta language

Typesinclude the basic types of truth values, natural numbers and
integers, which are calletbol, nat, andint respectively. The space

of total functions is denoted by:. Type variables are writtefa, 'b,

etc. The notation::7 means that HOL termhas HOL typer.

Now we defineSubobjs P, the set of all subobjects:

(C, Cs) € Subobjsg P wherea is the memory address of the neobject, and patfE, B]
(C, Cs) € Subobjs P represents the fact that this object has been up-castaiedb in
PrC <" PrC'<sD (D, Cs) € Subobjs g, P fact points to thes subobject.
(C, Cs) € Subobjs P
We have shown that this definition and the one by Rossie and

Friedman (se&2.2) are equivalent. Ours facilitates proofs because A CoreC++value (abbreviatedal) can be
paths are built up following the inductive nature of lists.

4.2 Values and Expressions

e a boolearBool b, whereb :: bool, Or

3.4 Path functions e an integetntg i, wherei :: int, or
Functioniast on lists returns the topmost class in a path (w.r.t. the e areferenceefr, wherer :: reference, Or
class hierarchyutlast chops off the last element. e the null referencevuli, or

Function@, appends two paths assuming the second one is
starting where the first one ends with. If the second path only
contains repeated inheritance, it starts with the same class the ﬁrstorec++ is an imperative but an expression_based |anguage where
one ends, so we can append both of themav{gaking care to just statements are expressions that evaluateiie The following

use the common class once). If the second path begins with a share@xpressiongof HOL type expr) are supported by CoreC++:
class, the first path just disappears (because we lose all information

e the dummy valué/nit.

below the shared class): e creation of new objectiew C

Cs@, Cs' = if last Cs= hd Cs then Cs@ tl Cs’ else Cs’ e static castingstat _cast Ce

The following property holds under the assumption that progeam ~ * ‘?Y“am'c castingdyn cast Ce

is well-formed. e |iteral value:val v

If (C, Cs) € Subobjs Pand (last Cs Ds) € Subobjs P * binary operationé; <bop> ez (Wherebop is one of+ or =)
then (C, Cs@,, Ds) € Subobjs P e variable accesgar Vv and variable assignmemt:= e

o field access.F{Ds} and field assignment,.F{Ds} = e;

A well formed program requires certain natural constraints of the X . !
prog d (wherebDs is the path to the subobject wharas declared)

program such as the class hierarchy relation to be irreflexive.

An ordering on paths is defined as follows: e method callie. M (es)
(C, Cs) € Subobjs P (C, Ds) € Subobjs P Cs = butlast Ds * block with locally declared variableV:T; ¢}
P.Cl CsC! Ds e sequential composition; ; e2
(C, Cs) € Subobjs P Pt lastCs <g D e conditionalif (e)e; else ez

(do not confuse with HOL'$ b then x else y)

P,C+CsC![D]
¢ while loop:while (e) e’

The reflexive and transitive closuremf is writtenC. The intuition
of this ordering is subobject containmeRi{C - Cs C Dsmeansthat The constructors/al andVar are needed in our meta-language

subobject(C,Ds) lies below(C,Cs) in the subobject graph. to disambiguate the syntax. There is no return statement because
everything is an expression and returns a value.
4. Abstract syntax of CoreC++ The annotation(Ds} in field access and assignment is not part

b- of the input language but is something that a preprocessor, e.g., the
type checking phase of a compiler, must add.
To ease notation we introduce an abbreviation:

We do not define a concrete syntax for CoreC++, just an a
stract syntax. The translation of the C++-subset corresponding to
CoreC++ into abstract syntax is straightforward and will not be
discussed here.

In the sequel, we use the following (HOL) variable conventions: refr = Val (Refr)
V is a (CoreC++) variable name a field nameM a method name,
e an expressiory a value, and’ a type. 4.3 Programs
In addition tocname (class names) there are also the (HOL) The abstract syntax of programs is given by the type definitions in
typeS vname (Val‘lable and field nameS), anginame (method F|g 4’ Wherety is the HOL type of CoreC++ typesl
names). We do not assume that these types are disjoint. A CoreC++ program is a list of class declarations.ciass

declaration consists of the name of the class and the class itself.
A classconsists of the list of its direct superclass names (marked
A referencerefers to a subobject within an object. Hence it is a shared or repeated), a list of field declarations and a list of method
pair of anaddressthat identifies the object on the heap (§€el declarations. Aield declaration is a pair of a field name and its
below) and a path identifying the subobject. Formally: type. Amethod declaration consists of the method name and the
method itself, which consists of the parameter types, the result type,
the parameter names, and the method body.
The path represents the dynamic context of a subobject as a result Note that CoreC++ (like Java, but unlike C++) does not have
of previous casts (as explained §2.4), and corresponds to the global variables. Method bodies can access only théifpointer
result of adding “delta” values to an object pointer in the standard gng parameters, and return a value.
“vtable” implementation. Note that our semantics does notemulate We refrain from showing the formal definitions (sek]) of
the standard implementation, but is more abstract. the predicates like® - C <z D introduced in§3 as they are
Note: CoreC++ references are not equivalent to C++ references, straightforward. Instead we introduce one more access function:
but are more like C++ pointers.
As an example, consider Fi§. Let us assume that tredse e class P C: the class (more preciselytass option) associated with
statement is executed, thiemvill have the reference value, [E, B]) CinP.

4.1 References

reference = addr X path

prog = cdecl list cdecl = cname X class
class = base list x fdecl list x mdecl list fdecl = vname X ty
method = tylist X ty X vname list X expr mdec] = mname X method
datatypebase = Repeats cname | Shares cname

Figure 4. Abstract program syntax

5. Type system

CoreC++ types are either primitiveBdolean and Integer), class
types Class C, NT (the type ofNull), or Void (the type ofUnit).

The set of these types (i.e. the corresponding HOL type) is called
ty. The first two rules of the subtype relatignare straightforward:

PETL<T PHFNT<ClassC

To relate two classes, we have to take care that we can use an objec

of the smaller type wherever an object of the more general type can
occur. This property can be guaranteed by requiring that a static
cast between these two types can be performed, resulting in the
premisé:

P+ path Cto D unique = 3!Cs (C, Cs) € Subobjs PA last Cs= D

This property ensures that the path from cladeading to clas®
exists and is uniquel(is unique existence).
This leads to the third subtyping rule:

P+ path Cto D unique
P += Class C < Class D

The pointwise extension &f to lists is written[<].

5.1 Typing rules

The core of the type system is the judgmertt - e :: T, wherek is
anenvironment, i.e. a map from variables to their types. We aall
thestatic type ofe.

We will discuss the typing rules (see Fig). construct by con-
struct, concentrating on object-orientation. The remaining rules can
be found elsewherel()]. For critical constructs we will also con-

for which C++ has fixed the rules as follows:: down-casts may
only involve repeated inheritance. To enforce this restriction we
introduce the predicate

P+ path Cto D viaCs = (C, Cs) € Subobjs PA last Cs= D

Combining the checks for up- and down-casts in one rule and re-
quiring the class to be known we obtain WT1 (see B)gRemem-

er that(C, Cs) € Subobjs rp P means thats involves only repeated
heritance.

As an example of an ambiguous down-cast, take the repeated
diamond in Fig1 and extend it with a shared supercl&ssf Top.
Casting aBottom object of a static clas€ to Top is ambiguous
because there are tilop subobjects.

Dynamic casts are non-trivial operations at run-time but stati-
cally they are as simple as can be: rule WT2 only requires that the
expression is well-typed and the class is known. This liberality is
not just admissible (because dynamic casts detect type mismatches
at run-time) but even necessary. We come back to this point when
we discuss the semanticsjf.3.2

5.1.2 Variable assignment and binary operators

The assignment rule WT3 is completely straightforward as the
expression on the right hand side has to be a subtype of the variable
type on the left hand side, which we get by consulting the typing
environment.

Rule WT4 for binary operators: Addition is unsurprising. In the
equality test, we assume that both operands have the same type, i.e.
that all necessary casts are performed explicitly. This simplifies the
presentation without loss of generality.

sider the question of type safety: does the type system guarantee; 1 3 Field access and assignment

that evaluation cannot get stuck and that, if a value is produced, it
is of the right type.

Values are typed with their corresponding types, eBgol as
Boolean, Intg asinteger. However, there is no rule to typerderence,
soexplicit references cannot be typadoreC++, like Java or ML,
does not allow explicit references for well known reasons.

5.1.1 Cast

Typing static casts is non-trivial in CoreC++ because the type
system needs to prevent ambiguities at run-time (although it cannot
do so completely). When evaluatisgit _cast Ce, the object that

e evaluates to may have multiple subobjects of clash it is an
up-cast, i.e. ifP,E - e :: Class D andD is a subclass of, we have

to check if there is a unique path framto C.

Two examples will make this clearer: if we want to cast
Bottom to Top in the repeated diamond in Fif, we have two
paths leading to possible subobjectBoftom ,Left ,Top] and
[Bottom ,Right ,Top]. So there is no unique path, the cast is am-
biguous and the type system rejects it. But the same cast in the
shared diamond in Fi@ is possible, as there is only one possible
path, namelyTop].

For down-casts we need to rememt&.) that we have chosen
to model a type safe variant aftatic_cast (which means
we throw an exception where C++ produces a run time error),

6 For more information about static casts, §6el.1

The typing rule for field access WT5 is straightforward. It can either
be seen as a rule that takes an expression where field access is
already annotated (byCs}), and the rule merely checks that the
annotation is correct. Or it can be seen as a rule for computing the
annotation. The latter interpretation relies on the fact that predicate
P Chas least F : Tvia Cs can computel’ andCs from P, C andF.

So it remains to explai® - C has least F : Tvia Cs: it checks ifCs

is the least (w.r.tC) path leading fronT to a class that declares an

F. First we define the setieldDecls P C F of all (Cs, T) such thatCs

is a valid path leading to a class with arof type T:

FieldDecls P C F=

{(csT)| _

(C, Cs) € Subobjs PA

(3Bs fs msclass P(last Cg = [(Bs fs, ms)| A map-of fs = |T])}

Then we select a least element from that set:

PFChasleastF : TviaCs=
(Cs T) € FieldDecls P C FA
(V(Cs, T")eFieldDecls P C EP,C+ CsCC Cs')

If there is no such least path, field access is ambiguous and hence
not well-typed. We give an example. Once again we concentrate on
the repeated diamond in Figand assume that a fietds defined in
classBottom and classTop. When type checking.x, wheree is

of classBottom , the path components iFieldDecls P Bottom x are
[Bottom], [Bottom ,Left ,Top] and [Bottom ,Right ,Top].

P.E e :: Class D is-class P C

P+ path Dto Cunique V (V Cs. P I~ path Cto Dvia Cs — (C, Cs) € Subobjsr P)

WT1

P,E }-stat _cast Ce :: Class C

P,Et e :: Class D

is-class P C
WT2

P,E+dyn_cast Ce
EV=|T|

PEFe:T

:: Class C

PHFT' LT
WT3

PEFV:i=¢e:
casebopof==T1=T2 AT=

PEFe;:: Ty PEFeg:: To

: T
Boolean | + = Ty = Integer A T2 = Integer A\ T = Integer

WT4

P,EFej; <bop>ex:: T

P,Et e :: Class C

P+ Chasleast F: Tvia Cs
WT5

P,E ¢.F{Cs}

P,Eteq :: Class C P ChasleastF: Tvia

=T

Cs PEley:: T PFT' LT

PEF e .F{Cs} =
P.Ete:: Class C

P+ Chasleast M = (Ts, T, m) via Cs

WT6
eg:: T

PEles[:] Ts P+ Ts'[<] Ts
WT7

P,Et e.M(es)

=T

Figure 5. The typing rules

The least element of the path components in this s@&at¢m],
so thex in classBottom will be accessed. Note that if noin
Bottom is declared, then there is no element with a least path in
FieldDecls and the field access is ambiguous and hence illegal.
Field assignment works analogously as shown in WT6.
The following example 19] shows that many compilers treat
dominance incorrectly and thus have problems with field access/
assignment (as well as method call):

class A { int x; }

class B { int x; }

class C : virtual A, virtual B { int x; }
class D : virtual A, virtual B, C {}
(new D())->x = 42;

Both g++ and the Intel compiler reject the left hand side of
(new D())->x = 42 as ambiguous while our type system cor-
rectly says that the least declaratiorxais the one irC.

5.1.4 Method call
In the call typing rule WT7 the class of e is used to collect all

declarations oM and select the least one. The set of all definitions (i)

(iii)

of methodMm from classC upwards is defined as

MethodDefs P C M=

{(Cs mthd) |

(C, Cs) € Subobjs PA

(3Bs fs msclass P(last C9 = | (Bs, fs, ms) | A map-of ms M= | mthd|)}

This set pairs the method (of typethod, see Fig4) with the path
Cs leading to the defining class. Among all definitions the least one
(w.r.t. the ordering on paths) is selected:

P F C has least M = mthdvia Cs=
(Cs mthd) € MethodDefs P C M\
(V (Cs', mthd')eMethodDefs P C MP,C + CsCC Cs)

Unfortunately, the absence of static ambiguity of method lookup is
not sufficient to avoid ambiguities at run-time. Even if the call is
well-typed,e may evaluate to a class belawfrom which there is
no least declaration aff. We presented this problem in Example 3
and will discuss it in detail i36.3.6

In the third premise of WT7, the relatidn] is the pointwise
extension of: to lists.

state heap x locals

locals = vname — val

heap = addr — obj

obj = cname X subo set
subo = path X (vname — val)

Figure 6. The type of CoreC++ program states

5.2 Well-formed programs

A well-formed CoreC++ programw({-C-prog P) must obey all the
usual requirements (every method body is well-typed and of the
declared result type, the class hierarchy is acyclic, etc — for de-
tails see 10]). Additionally, there are CoreC++-specific conditions
concerning method overriding:

(i) covariance in the result type combined with the uniqueness of
paths from the new result classad result classes in previous
definitions of the same method (see Example 4). This require-
ment is easily formalized by means of thegh-unique predicate
introduced ing5.

invariance in the argument types (see Example 5)

for every method definition a class sees via patlcs, the
corresponding subobje¢t,Cs) must have a least overrider as
explained ing6.3.6(otherwise the corresponding C++ program
would not be able to construct a unique vtable entry for this
method call and the program would be rejected at compile time)

6. Big Step Semantics

The big step semantics is a (deterministic) relation between an
initial expression-state paie,s) and a final expression-state pair
(e',s"). The syntax of the relation is
P.E (e,s) = (e’;s"y and we say that evaluatesto e’. The rules

will be such thaffinal expressions are always valua&l() or ex-
ceptions throw), i.e. final expressions are completely evaluated.

6.1 State

The set of states is defined in Fig. A stateis a pair of aheap
and astore (locals). A store is a map from variable names to values.
A heap is a map from addresses to objects.object is a pair of
a class name and its subobjectss#bobject (subo) is a pair of a

new-Addrh = |a| h’=h(aw~ (C, init-obj P C))
P.E+ (new C,(h, 1)) = (ref (a, [C]),(h’, 1))
P.E\ (e,so) = (ref (a, Cs),s1) P I~ path ast Csto Cvia Cs’ Ds = Cs @, Cs’
P.E - (stat _cast Ce,so) = (ref (a, Ds),s1)
P,E - {e,sq) = (ref (a, Cs @ [C] @ Cs'),s1) is-class P C C ¢ set Cs’
P.E - (stat _cast Ce,so) = (ref (a, Cs Q [C]),s1)
P,E (e,s0) = (ref (a, Cs),(h, 1)) ha=|(D,.)]| P - path D to Cvia Cs’
P.E I (dyn cast Ce,so) = (ref (a, Cs’),(h, 1))
P.E\ (e,so) = (ref (a, Cs),(h, 1))
ha=|(D,S)] — P+ path Dto C unique — P+ path last Cs to C unique C ¢ set Cs V — distinct Cs
P.E+ (dyn _cast Ce,so) = (null,(h,I))
P.Et (e,s0) = (Val v,(h, 1)) EV=|T] P Tcastsvto v’ I'=1(V—v)
P.EF (V= e,s0) = (Val v/,(h, 1))
P.E - (e1,s0) = (Val vi,s1) P.Et (e2,s1) = (Val va,s2) binop (bop, vi, v2) = | v]
P,E I (e1 <bop> ea,s0) = (Val v,s2)
P,E + (e,so) = (ref (a, Cs’),(h, 1)) ha=|(D,S)] Ds = Cs' @, Cs (Ds, fs) € S fsF=|v] BS8
P.E + (e.F{Cs},s0) = (Val v,(h,1))

P.E - (e1,50) = (ref (a, Cs'),s1) P.Et (e2,51) = (Val v,(ho,12))
hoa=|(D,S)] P I last Cs' has least F : Tvia Cs Pl Tcastsvtov’ Ds = Cs' @, Cs
(Ds, fs) € S fs' = fs(F — v') S'=8 — {(Ds, fs)} U {(Ds, fs")} hs'=hy(a (D, S")

P,Et (e1.F{Cs} = ea,s0) = (Val v/,(h2’,12))
P.E | (e,so) = (ref (a, Cs),s1) P.E - (ps,s1) [=] (map Val vs,(h2, I2))
he a=[(C,.)| P~ last Cshas least M = (_, T’, _, _) via Ds
P (C, Cs @, Ds) selects M = (Ts, T, pns, body) via Cs’
|vs| = |pns]| P - Ts Casts vsto vs’ 12’ = [this — Ref (a, Cs'), pns [—] vs']
new-body = (case T’ of Class D = stat _cast D body | - = body)
P,E(this +— Class (last Cs"), pns [—] Ts) - (new-body,(h2, 12")) = (e’,(h3, I3))
P.E - (e.M(ps),s0) = (€’,(hs, 12))

BS1

BS2

BS3

BS4

BS5

BS6

BS7

BS9

BS10

Figure 7. The Big Step rules

path (leading to that subobject) and a field table mapping variable For a better understanding of the evaluation rules it is helpful

names to values. to realize that they preserve the following heap invariant: for any
The naming convention is thatis a heap] is a store (théocal object(c, S) on the heap we have

variables), and a state. . .
Note that CoreC++, in contrast to C++, does not allow stack- S contains exactly the paths starting fram

allocated objects: variable values can only be pointers (CoreC++ {Ds | 3fs. (Ds, fs) € S} = {Ds | (C, Ds) € Subobjs P},

references), but not objects. Objects are only on the heap (as in ® S is a (finite) function:

Java). We do not expect stack based objects to interfere with multi- V¥ (Cs.fs), (Cs',fs") € S. Cs = Cs’ — fs = fs’

ple inheritance. . .
Remember further that a reference contains not just an addreSSFurthet[morg, |;an ex%r(tasslerevaluates toef (a, Cs) then the heap

but also a path. This path selects the current subobject of an objectmapsa 0 L(C, $)] such tha

and is modified by casts (see below). e Cs is the path of a subobject i (Cs, fs) € S for somefs.

6.2 Exceptions e Jast Cs is equal to the class efinferred by the type system.

soundness as certain problems can occur at run-time (e.g., a failingconcentrating on object-orientation, as shown in FigThe re-
cast) which we cannot prevent statically. In these cases we throw anMaining rules can be found elsewhet€][

exception so the semantics does not get stuck. Three exceptions are .]

possible in CoreC++OutOfMemory, if there is no more space on 6.3.1 Object creation

the heap(lassCast for a failed cast andvullPointer for null pointer ~ Ryle BS1 shows the big step rule for object creation. The result of
access. We will explain in the text exactly when an exception is evaluatingnew C is a referenceef (a, [C]) wherea is some unal-
thrown but will omit showing the corresponding rules; the inter- |ocated address returned by the auxiliary funciem-Addr (which

ested reader can find them in the appendix. returnsNone if the heap is exhausted, in which case we throw an
63 Evaluati OutOfMemory exception). As a side effect,is made to point to the
-5 Evaluation object(C, S), wheres = init-obj P C is the set of all subobjectss,

Remember thaP,E (e,s) = (e’,s’) is the evaluation judgment, fs) such that(C, Cs) € Subobjs P andfs :: vname — val is the field
whereP denotes the program amdthe type environment. The need table that contains every field declared in classCs initialized
for E will be explained in56.3.3 with its default value (according to its type). We omit the details.

Note that C++ does not initialize fields. Our desire for type safety
requires us to deviate from C++ in this minor aspect.

6.3.2 Cast
Casting is a non-trivial operation in C++, in contrast to Java. Re-

member that any object reference contains a path componentidenti
fying the current subobject which is referenced. A cast changes this
path, thus selects a different subobject. Hence casting must adjust
the path component of the reference. This mechanism corresponds

to Stroustrup’s adjustment of pointers by “delta” values. We con-

6.3.4 Binary operators

The evaluation rule for binary operators BS7 is based on a function
binop taking the operator and its two argument values and return-
ing an optional (in order to deal with type mismatches) result. The
definition of binop for our two binary operators and+ is straight-

Forward:

|Bool (vi = va)]
lIntg (i1 + i2)]
None

binop (=, v1, va2)
binop (+, Intg iy, Intgiz) =
blnop (77 - *)

sider it a prime example of the fact that our semantics does not rely In the first equation, equality on the left hand side is the CoreC++

on run-time data structures but on abstract concepts.

Let us first look at the static up-cast rule BS2: After evaluating
e to a reference with patbs, that path is extended (upward) by a
(unique, if the the cast is well-typeg5.1.1) pathCs’ from the end
of Cs up to C, which we get by predicatgath-via. So if we want
to castBottom to Left in the repeated diamond in Fid, the
appropriate path isHottom ,Left], castingRight to Top inthe
shared diamond in Fi@ uses pathTop].

Rule BS3 models the static down-cast which forbids down-casts

involving shared inheritance. This means that classust occur

in the path component of the reference, or the cast is “wrong”.
Moreover,C may not occur again further right in the path and it
has to be a class in the given program

equality operator, equality in the middle is definitional equality, and
equality on the right hand side is the test for equality. Logically, the
latter two are the same.

Addition only yields a value if both arguments are integers. We
could also insist on similar compatibility checks for the equality
test, but that leads to excessive case distinctions that we want to
avoid for reasons of presentation. In particutadoes not perform
any implicit casts.

6.3.5 Field access and assignment

Let us first look at field access in rule BS8. There are two paths
involved. Cs is (if the expression is well-typed5.1.3 the path
from the class of to the class wher& is declared.Cs’ is the

If neither of these two rules applies, the static cast throws a path component of the reference tkagvaluates to. As we have

ClassCast exception.
Now considerdyn_cast
C++. If possible,dyn_cast

which modelsdynamic_cast in
tries to behave like the static cast:

there are two rules (not shown) that look almost like BS2 and BS3,

except that they evaluatiyn cast Ce rather tharstat _cast Ce.

In the presence of multiple inheritance, not only up and down-casts

are possible but also cross-casts: A refereac@Bottom, Left]) to
the Left subobject of aBottom object (in either the shared or
repeated diamond) can be cast totight subobject resulting in
the referencéa, [Bottom, Right]).

discussed ir36.3, last Cs’ is equal to the static class afTo obtain

the complete path leading to the subobject in whidlves, we just

have to concatenate via, the two paths. The resulting path is

the path to the subobject we are looking fore Hoesn't evaluate to

a reference, but to a null pointer, we throwialiPointer exception.
Field assignment (rule BS9) is similar, except that we now have

to update the heap atwith a new set of subobjects. The up-cast

is inserted implicitly, analogously to BS6. Note that the functional

nature of this set is preserved.

Luckily, dynamic up, down and sideways-casts are all subsumed 6.3.6 Method call

by rule BS4. After evaluating to a reference to addreas we
look up the clas® of the object at address If D has a unique
C subobiject, that is the one the reference must now point to.

If BS4 is inapplicable, i.e. if there is either no path or no unique

Rule BS10 is lengthy:

e evaluatee to a referencéa, Cs) and the parameter ligk to a
list of valuesvs;

path from the dynamic class, and a static cast fails as well, we return e |ook up the dynamic class of the object in the heap at

the null pointer, i.e. the valugull (see BS5). This is exactly how
C++ handles failinglynamic_cast s.

We now come back to the point raised in the discussion of the

typing rule for dynamic casts i§5.1.1 Rule WT2 needs to be as
liberal as it is because even if there is no relationship between
and the static class af (call it B), e may evaluate to an object
of a subclass of botle and B and the cast could succeed. Does
that mean we should at least require theand B have a common

subclass (or maybe superclass)? Not even that: since inheritance ®
is all about permitting later extensions with new subclasses, the

common subclass @ andB need not yet exist whedyn _cast C
e is type checked.

6.3.3 Variable assignment

¢ look up the method definition used at type checking time (
Cs is the static class af) and note its return typ€ and the path
Ds from last Cs to this definition;
¢ select the dynamically appropriate method (see below) and note
its parameter namesis, parameter typegs, body body, and
pathCs’ from C to this definition;
e check that there are as many actual as formal parameters;
cast the parameter valuesup to their static typess by using
P - Ts Casts vs to vs’, the pointwise extension of casts to lists,
yielding vs’;
evaluate the body (with an up-cast @ if T is a class) in
an updated type environment whetgs has typeCiass (last
Cs’) (the class where the dynamically selected method lives)

Assignment is straightforward except that it requires an up-cast of
the expression to the static type T of the variable. Hence we need
the environment E to look up T (bg vV = [T]). The up-cast is
inserted implicitly by the semantics and defined via

VC. T # Class C

PFTcastsvtov

P Class C casts Nullto Null
P I~ path last Csto Cvia Cs’ Ds = Cs @, Cs’
P+ Class C casts Ref (a, Cs) to Ref (a, Ds)

and the formal parameter names have their declared types, and

where the local variables areis and the parameters, suitably

initialized.
The final store is the one obtained from the evaluation of the pa-
rameters; the one obtained from the evaluatiobodf is discarded
—remember that CoreC++ does not have global variablesJél-
uates to a null pointer, we throwNuliPointer exception.

Method selection is performed by the judgment- (C, Cs)
selects M = mthd via Cs’ , where(C,Cs) is the subobject where the
method lives that was used at type checking time. Hence there is

10

class Top { void f(); } V mthd Cs’. = P - C has least M = mthd via Cs’
class Right2 : Top { ... } P - (C, Cs) has overrider M = mthd via Cs’

class Right : virtual Right2 { void f(); } — - 7
class Left : Top { void f(; } P (C, Cs) selects M = mthd via Cs

class Bottom : Left, Right { ... }

6.4 Small Step Semantics

((Right2*)(new Bottom()))->f(); Big step rules are easy to understand but cannot distinguish non-
termination from being stuck. Hence we also hawerall stepse-
Figure 8. Example illustrating static resolution of dynamically mantics where expression-state pairs are gradually reduced. The
ambiguous method calls reduction relation is writte®,E - (e,s) — (e’,s’) and its transitive
reflexive closure i®,E I- (e,s) —* (e’,s').

We do not show the rules (for lack of space) but emphasize that
we have proven the equivalence of the big and small step semantics
(for well-formed programs):

at least one definition a¥1 visible from C. There are two possible
cases. If we are lucky, we can select a unique method definition

based solely oq: PEF (e,;s) = (e/;s"y = (P,Et+ (e,s) —* (e/,s') A final e’).
P I~ Chas least M = mthd via Cs’
P (C, Cs) selects M = mthd via Cs’ 7. Type Safety Proof

Otherwise we need static information to disambiguate the se- Type safety, one of the hallmarks of a good language design, means
lection as Example 3 already demonstrated. To appreciate thethat the semantics is sound w.r.t. the type systewil-typed ex-
full intricacies of this mechanism, let us consider the example in pressions cannot go wrongoing wrong does not mean throw-

Fig. 8, where a subobjecBpttom ,[Right2]) calls method: the ing an exception but arriving at a genuinely unanticipated situation.
path components iMethodDefs P Bottom f are Bottom ,Left], The by now standard formalization of this proper88] requires
[Bottom ,Left ,Top], [Bottom , Right] and [Right2 ,Top]. proving two propertiegprogresgwell-typed expressions can be re-

None of these paths is smaller than all of the others, so we cannotduced w.r.t. the small step semantics if they are not final yet — the
resolve the method call purely dynamically. So another approach small step semantics does not get stuck) praservationor sub-

is taken: we select the minimal paths MethodDefs P Bottom f, ject reduction reducing a well-typed expression results in another
which leaves us with Bottom ,Left] and [Bottom ,Right]. well-typed expression whose typedsthe original type.
Now we have to find out which of these two paths will select In the remainder we concentrate on the specific technicalities of

the method to call. This is done by considering the statically se- the CoreC++ type safety proof. We do not even sketch the actual
lected method call (i.e. the least one seen from the static classproof, which is routine enough, but all the necessary invariants and
Right2), yielding path Right2 ,Top], which is guaranteed to be notions without which the proof is very difficult to reconstruct. For
unique by the type system. Now we append this 'static’ path to the a detailed exposition of the Jinja type safety proof, our starting
path component of the subobject, which results in the path where point, see 10]. For a tutorial introduction to type safety see, for
the dynamic class sees the statically selected method definition,example, 18].
namely Right2]@,[Right2 ,Top] = [Right2 ,Top]. Finally
we select a path from the above set of minimal paths that is smaller7.1 Run-time type system
than the composed path, which results Boftom ,Right]. The Th . lication i " fot fs is the fact that
uniqueness of this path is guaranteed by the well-formedness of the € main complication in many typ€ safety prools IS the act tha
program (se&5.2 (ii)). well-ﬁypedness W.r.t. th_lghst?tlcltyape systerlw_mm p[]esherved by the .
Abstractly,P I (C, Cs) selects M = mthd via Cs’ selects thaCs’ ;sk:nat\ step ste m"f‘?t'cs' € ?Ut oes nptt e with the sentjanttlﬁst ut
from the set of minimal paths froma to definitions ofM that lies et ype Sys ZT) orgragt;_ma Ic (rjeaso_ns lI requtn}es i)roper lfe? _.'Flhare
on Cs, i.e. that lies below the statically selected method definition gosepggﬁgr;’;pe s%/yrs?e%ci!sor:\:; degr(\jvlhrirfhei\garr% o?er I?E)peer :Iabityél o Slésd
Cs. The minimal elements are collected BynimalMethodDefs, under reduction. This is known as then-time type systef7] and

MinimalMethodDefs P C M= the judgment isP,E,h I ¢ : T. Please note that there is no type
{(Cs mthd) | checking at run-time: this type system is merely the formalization
(Cs mthd) € MethodDefs P C M\ of an invariant which is not checked but whose preservation we
(V (Cs', mthd) eMethodDefs P C MP,C - Cs'C Cs— Cs'= Cs)} prove. Many of the rules of the run-time type system are the same
the ones that override the definition @, i.e. are belowcs, are as in the static type system. The ones which differ are shown in
selected byoverriderMethodDefs, Fig. 9. .

Rule RT3 takes care of the fact that small step reduction may
OverriderMethodDefs P R Mt introduce references values into an expression (although the static
{(Cs mthd) | type system forbids them, sé&.1). The premisepP + typeof}, v

3Cs’ mthd'.
P I Idc Rhas least M = mthd via Cs’' A
(Cs mthd) € MinimalMethodDefs Kmdc R M A

= | T| expresses that the value is of the right typeyif Ref
(a, Cs), its type isClass (last Cs) providedh a = [(C,)] and

P,mdc R- CsC snd R@, Cs'} (C, Cs) € Subobjs P. o _
The main reason why static typing is not preserved by reduction
and selection of a least overrider is performed as follows: is that the type of subexpressions may decrease from a class type

PLRh ider M — mthdvia Cs— to a null type with reduction. Because of this, both cast rules only
as overrider M = mthdvia Ls= require the expression to cast to have a reference typeT T),

(Cs mthd) € OverriderMethodDefs P R M\ hich ith | th It N fthe checks that

card (OverriderMethodDefs P R M= 1 which means either a class or the null type. None of the checks tha
are needed for the static cast are important for the run-time type

Note thatOverriderMethodDefs returns a singleton set (card isthe system.
cardinality of a set) if the program is well-formed (s§®2 (jii)). Rule RT4 takes care efF{Cs} where the type of has reduced
Hence the second defining rule f@fects is to NT. Since this is going to throw an exception, and exceptions can

11

PEhte: T is-refT T is-class P C RT1
P.E,h-dyn _cast Ce: Class C
PEhte:T is-refT T is-class P C
RT2

P.E,h-stat cast Ce: Class C
P+ typeofyy v = |T]| R PEhtFe:NT
PEht-Val v:T PEhtFeF{Cs}: T
PEhFe :NT PEhbkey:T PFT<T
PEhte;.F{Cs}:= ex: T
PEhte:NT P.E,htes[:] Ts
PEhteM(es): T

T3 RT4

RT5

RT6

Figure 9. Run-time type system

have any type, this expression can have any type, too. Rules RT5
and RT6 work similarly for field assignment and method call.

We have proved that,E e :: T impliesP,E,h - e : T. Heaph
is unconstrained as the premise implies thdbes not contain any
references.

7.2 Conformance and Definite Assignment

Progress and preservation require that all semantic olgjenfsrm

to the type constraints imposed by the syntax. We say that a value
conforms to a typdg (written P,h + v :< T) if the type ofv equals
typeT or, if T is a class typey has typeNT. A heap conforms to a
program if for every objectC, S) on the heap

o if (Cs, fs) € S then(C, Cs) € Subobjs P and if F is a field of type
T declared in classust Cs thenfs F = |v] and the type of (in
the sense of rule RT1) conforms to type

e if (C, Cs) € Subobjs P then(Cs, fs) € S for somefs.

In this case we writeP - h /. A storel conforms to a type
environment iff 1V = |v]| impliesE vV = | T| such thav conforms
to T. In symbols:P,h + 1 (:<),, E. We also need conformance
concerning the type environmertivconf P E states that for every
variable that maps to a type in environmehtthe type is a valid
type in prograne.

envconfPEEVVT.EV=|T| —is-typeP T

If P-h+/,Pht1(:<), E andenvconf P E then we writeP,E -
(1, h) 4/ and say that staté,l) conforms to the program and the
environment.

For the proof we need another conformance property, which
we call type-conf. It simply describes that given a certain type, an
expression has that type in the run-time type system. However, if
this given type is a class type, the run time type system may also
return the null type for the expression.

type-conf PE (ClassC) he = P,ElhFe:ClassCV P,E,h+e: NT
type-conf PE Void h e = P,E,h-e: Void

The rules forBoolean, Integer and NT are analogous to the rule
containingVoid.

From Jinja we have inherited the notiona#finite assignment
a static analysis that checks if in an expression every variable is
initialized before it is read. This constraint is essential for proving
type safety. Definite assignment is encoded as a predizcatgch
thatD e A (whereA is a set of variables) asserts the following
property: if initially all variables im are initialized, then execution
of e does not access an uninitialized variable. For technical reasons
A is in fact of typevname set option. That is, if we want to execute
in the context of a storewe need to ensurP e |dom I]. SinceD is

12

completely orthogonal to multiple inheritance we have omitted all
details and refer tol[0] instead.

7.3 Progress

Progress means that any (run-time) well-typed expression which is
not yet not fully evaluated (i.e. final) can be reduced by a rule of
the small step semantics. To prove this we need to assume that the
program is well-formed, the heap and the environment conforms,
and the expression passes the definite assignment test:

If wf-C-prog P and P,E;ht-e: T and P+ h,/ and envconfP Eand
De|doml| and —final e then3e’s’. PEF (g (h, 1)) — (e',s").

This theorem is proved by a quite exhausting rule induction on the
(run-time) typing rules, where most cases consist of several more
case distinctions, like being final or not. So some cases can get
quite long (e.g., the proof for method call has about 150 lines of
proof script).

7.4 Preservation

To achieve type safety we have have to show that all of the assump-
tions in the Progress theorem above are preserved by the small steps
rules.

First, we consider the heap conformance:

If wf-C-prog PandP,E+ (e,(h, 1)) — (e’,(h’, 1)) and
P.Esht-e:TandPFh,/ thenP+-h’,/.

We proof this by induction on the small step rules. Most cases are

straightforward, the only work lies in the rules which alter the heap,

namely the ones for creation of new objects and field assignment.
Next, we need a similar rule for the conformance of the locals.

To prove this, we need to assume that the program is well formed,

the environment conforms to it and the expression is well typed in

the runtime type system:

If wf-C-prog Pand P,E (e (h, 1)) — (e’,(h’,1")) and

P.EhFe: T andP,ht 1 (:<), E and envconf P Ethen

Ph' 17 (:<)w E.

Here, the interesting cases from the small step rule induction are
those that change the locals, namely variable assignment and blocks
with locally declared variables.

Furthermore, also definite assignment needs to be preserved
from the semantics. The corresponding lemma is quite easily
proved by induction on the small step rules:

If wf-C-prog Pand P,E+ (e (h, 1)) — (e’,(h’,1")) and
De|doml| thenD e’ [dom/].

Finally we have to show that the semantics preserves well-
typedness. Preservation of well-typedness here means that the type
of the reduced expression is equal to that of the original expression
or, if the original expression had a class type, the type may reduce
to the null type. This is formalised via thepe-conf property from
§7.2
If wf-C-prog PandP,E (e;s) — (e’,s’) andP,E+ s/ and
P,E,hp st e: T thentype-conf P E Tthp &) e'.

wherehp s is the heap component ef This proof is quite lengthy
because the most complicated cases (mostly method call and field
assignment) of the 68 small step rules can have up to 80 lines of
proof script each (the snapshot in Fif) shows the first case of the
proof).

7.5 The type safety proof

All the preservation lemmas only work 'one step’. We have to
extend them from- to —*, which is done by induction (because
of the equivalence of big and small step semantics mentioned
in §6.4, all these lemmas now also hold for the big step rules).

Now combining type preservation with progress yields the main consideration with a “smaller” return type. Then, by assigning

theorem: the returned reference to the variable, the reference may receive
If Wi-C-prog Pand P,E s/ andP,E - e:: T and a supertype to its actual type (given by the last class in its pat_h
De|dom(lcl s)| and PEF (e9) ok (¢',s") and component). Because of this it was possible to have references leh
~(3e"’s". PEF (/) — (e/s'")) then a “gap” between the last class in its path component and the static
(3v.e’=Val VAPhpsFv:<T)V class given by the (run time) type system. In the field access and
(3r. e’ = Throw r A the-addr(Ref) € dom(hp s)). field assignment rules one needed to fill this gap by introducing

in the rules a third path. We could not always guarantee this third
path to be unique, and also threw tiemberAmbiguousException
when this was not the case.

However, realizing that the introduction of a new exception
takes us away from the semantics of C++, we adopted the use of
static information in both cases to eliminate tdemberAmbigu-
ousExceptiorexception. To this end, we introduced the term of an
overriderwhich enabled us to use static information to make a dy-
8. Evolution of the Semantics namically ambiguous method call unique. Of course, the resulting

ethod call rule is quite intricate and requires auxiliary predicates.

o close the “gap” between the last class of a reference and the class
computed by the type system we extended assignment and method
call rules with explicit casts to the static type. Thus the need for the

8.1 Addresses, references and object structure exception disappeared.

From the beginning, it was clear that objects in the heap have to

comprise an object’s dynamic class, a subobject, and the values ; ;

stored in the object’s fields. We initially thought that pointers to 9. Working with Isabelle

objects could be identified by just an address. However, by studying This section is written for the benefit of readers unfamiliar with au-
the behaviors of static casts and field operations, we soon realizedtomated theorem provers. So far they may have gotten the impres-
that we need to keep track of the subobject that is currently being sion that, given all the definitions and the statement of a lemma,
pointed to. Our first attempt was to incorporate this information Isabelle proves it automatically. Unfortunately, formal proofs still
in the object description itself, so objects became a triple with a require much effort by an expert user, a limitation Isabelle shares
path (the only way to uniquely identify a subobject) as the third With all such proof systems. A proof is an interactive process, a

If the program is well formed, stateconforms to it,e has typer
and passes the definite assignment test Wokii. (Icl s) (whereicl s

is the store component @j and its—-normal form ise’, then the
following property holds: eithe¢’ is a value of typer (or NT, if T

is of type class) or an exceptidarhrow r such that the address part
of r is a valid address in the heap.

The semantics presented in this paper has gone through sever
stages. This section will discuss a few example steps in the evo-
lution of the specification.

component: dialogue where the user has to provide the overall proof structure
) and the system checks its correctness but also offers a number of
obj = cname X path X (path — vname — val) tools for filling in missing details. Chief among these tools are the
Addr addr, whereaddr = nat simplifier (for simplifying formulae) and the logical reasoner (for

However, in the presence of multiple pointers to some ohject ~ Proving predicate calculus formulae automatically).

each of these pointers may point to a different subobject ahd Most of the proofs in the present paper are writtenlsar

hard-coding subobject information initself is clearly insufficient. [37], @ language of structured and stylized mathematical proofs

Realizing this, we removed the path component fronoijectand understandable to both machines and humans. This proof language

included it with thepointer (which we now call aeferencg, which is invaluable when constructing, communicating and maintaining

is similar to how C++ works. Moreover, for technical reasons, we Iargg proofs. ’
replaced the mapping from paths to the variable maps by a set of Fig. 10 shows a snapshot &froof General1], Isabelle’s GUI,
tuples with these two components. Thus, we arrived at the object Which turns the XEmacs editor into a front end for Isabelle that

representation that we are using now: supports interactive proof construction. In the main window the
' reader can see a fragment of an Isar proof text. Other windows show
obj = cname X (path X (vname — val)) set the context, e.g. assumptions currently available, and diagnostic
Ref reference, Wherereference = addr x path andaddr = nat information, e.g. if a proof step succeeded or failed.
o Isabelle also supports the creation X documents (such as
8.2 Eliminating exceptions by using static type information this paper) based on Isabelle input fileSiX text may contain

A big issue was how to handle method calls that become ambigu- references to definitions and lemmas in Isabelle files and Isabelle
ous at run-time. As already stated in the discussion of example 3 will automatically substitute those references by pretty printed and
in §2.4, we initially considered the use of static information to re- typeset versions of the respective formulae. This is similar to and
solve dynamically dispatched calls contrary to the idea of dynamic has all the advantages of “literate programming”.

dispatch. Following this line of reasoning, we argued that a method

call that is ambiguous at runtime should not be resolved but should 19 Related work

throw aMemberAmbiguousExceptignstead. So the rule looked)))))
as follows: There is a wealth of material on formal semantics of object-oriented

languages, but to our knowledge, a formal semantics for a language
with C++-style multiple inheritance has not yet been presented. We
distinguish several categories of related work.

Pt (e,s0) = (ref (a,Cs),s1)
P+ (ps,s1) [=] (map Val vs,(h2,l2)) ho a = Some(C,S)
¥ Ts T pns body Cs’. = P \- C has least M = (Ts, T,pns,body) via Cs’

P (e-M(ps),s0) = (THROW MemberAmbiguous,(h2,12)) 10.1 Semantics of Multiple Inheritance

A similar issue arose in the presence of overridden methods with Cardelli [5] presents a formal semantics for a form of multiple in-
covariant return types. Consider, for example, a situation where the heritance based on structural subtyping of record types, which also
result of a method call (a reference) is assigned to a variable, andextends to function types. Another early paper that claims to give
where there exists an overriding definition of the method under a semantics to multiple inheritance for a language (PCF++) with

13

. A —
emacs: TypeSafe.thy XE emacs: “goals® [=][=][x]
FHile Edit View Cmds Tools Options Buffers Proof-General X-Symbol Isabelle Help 2
- E E B --@ @ n - proof (prove): step 18
State | Context| Retract @‘ ‘ | Command Stop mwv“g] mlp‘ fixed variables: P, E, ¢, h, 1, ', h', 1', es,
es', C=0C, E=E, a=4a, h="h, ht =h',
BigStep.thv| Conform. thy| Progress.thy TypeSafe.thy _ 1=1, T=rT
_ = | prems:
theorem assumes wf: "wr_[‘_proq P“ wf_C_prog P
shows subject_reduction2: "P,E + {e,(h,1)} = {e',(h',1')} new &ddr h = La]
= (AT. [P,E F (h,1) ¥; P, E hikte:T] h' = h(a » (C, init_obj P C))
= type_conf P ET h' e')" P,E F (h, 1)
and subjects_reduction2: "P,E F {es,(h,1)} [=] {es',(h',1")} P,E,h Fnew C : T
= (ATs.[P,E + (h,1) +; P,E,h F es [:] Ts]
= types_conf (P,E,Ts,h',es'))" 4 | using this:
proof (induct rule:red_reds_induct) T = Class C
case (RedNew C E a h h' 1) P,E,h' F ref (a, [C]) : Class C
have new:"new_2ddr h = Some a"
and h':"h' = h(a = (C, init_obj P C))" goal (show, 1 subgoal):
and wt:"P,E,h F new C : T" . 1. type_conf P E T h' (ref (a, [C])) -
from wt have eq:"T = Class C" and class:"is_class P C"
by auto)
from class have subo:"(C,[C]) € Subobjs B" =
by(rule Subobjs_Basej - ’ b emacs: “response” S=11ES]
from h' have "h' a = Some(C, init_obj P C)" Successful attempt to solve goal by exported rule: [§
by({simp add:map_upd_Some_unfold) [new_addr *h = [7al;
with subo have "P,E,h' F ref(a,[C]) : Class C" by auto ?2h' = ‘Th(‘?‘d ~ (?7C, init_obj P 7C));
with eq show ?case by auto] P,?E F (7 ?1) ¥; P,?E,?h F new ?2¢C : ?T]
next 9 AT Akt a0
case (RedNewFail C E h 1) v = type conf P ?E 7T ?h' (ref (?a, [7]))D
v s % LI WO~ SR i - . L
§u——** XEmacs: TypeSafe. thy (Isar script XS:isabelle/s Font| | y
[Isabelle] Successful attempt to solve goal by exported rule:

Figure 10. Snapshot of Isabelle in the Proof General GUI

record types is4]. It is difficult to relate the language constructs independently that multiple inheritance can be simulated using a
used in each of these works to the multiple inheritance model of combination of interfaces and delegati®2,[31, 34]. Nonetheless,
C++. all of these works stop well short of dealing with the more intri-
cate aspects of modeling multiple inheritance such as object initial-

. . ization, implicit and explicit type casts, instanceof-operations, and
10.2 C++ Multiple Inheritance handling sﬂared and rgpeattggmultiple inheritance. P

Wallace B5] presents an informal discussion of the semantics of Multiple inheritance also poses significant challenges for C++
many C++ constructs, but avoids all the crucial issues. The natural compiler writers because the layout of an object can no longer
semantics for C++ presented by Seligm&2][does not include reflect a simple linearization of the class hierarchy. As a result,
multiple inheritance or covariant return types. Most closely related a considerable amount of research effort has been devoted to the
to our work is B], where some basic C++ data types (including design of efficient object layout schemes for C86,[29, 39].

structs but excluding pointers) are specified in PVS; an object
model is “in preparation”.

The complexities introduced by C++-style multiple inheritance
are manifold, and have to our knowledge never been formalized Various models of multiple inheritance are supported in other
adequately or completely. In the C++ stand28]] the semantics object-oriented languages, and we are aware of a number of pa-
of operations such as method calls and casts that involve classpers that explore the semantic foundations of these models.
hierarchies are defined informally, while several other works (see, = The work by Attaliet al. [2] is similar to ours in spirit but
e.g., R6]) discuss the implementation of these operations in terms treats Eiffel rather than C++, whose multiple inheritance model
of compiler data structures such as virtual function pointer tables differs considerably. Eiffel uses shared inheritance by default; re-

10.3 Other Languages with Multiple Inheritance

(“vtables”). peated inheritance is not possible, instead repeated members must
Rossie and Friedma()] were the first to formalize the seman- be uniquely renamed when inherited.
tics of operations on C++ class hierarchies in the form of a cal- In several recent languages such as1B| gnd Concord 9],

culus of subobjects, which forms the basis of our previous work multiple inheritance arises as a result of allowing classes to over-
on semantics-preserving class hierarchy transformations that wasride other classes, in the spirit of BETA'S virtual class&g][In Jx
already mentioned i1 [33, 23, 24, 25]. [15], an outer classl; can declare a nested clads. B, which can

Ramalingam and Srinivasaidq] observe that a direct imple- be overridden by a nested clads.B in a subclassi; of A;. In
mentation of Rossie and Friedman’s definition of member lookup this caseA,.B is a subclass afl;.B. Shared multiple inheritance
can be inefficient because the size of a subobject graph may be ex-arises whem,.B also has an explicitly defined superclass. Mem-
ponential in the size of the corresponding class hierarchy graph. ber lookup is defined quite differently than in C++ (implicit over-
They present an efficient member lookup algorithm for C++ that riding inheritance takes precedence over explicit inheritance when
operates directly on the class hierarchy graph. However, like Rossieselecting a member), but appears to behave similarly in practice.
and Friedman, their definition does not follow C++ precisely in Nystrom et al. present a type system, operational semantics and
cases where static information is used to resolve ambiguities (seesoundness proof for Jx, although the latter is not machine-checked.
Example 3 in§2.4). Concord P] introduces a notion ofroupsof classes, where a

It has long been known that inheritance can be modeled using agroup g may be extended by a subgrogf An implicit form of
combination of additional fields and methods (a mechanism com- inheritance exists between a clasX declared in grougy that is
monly called “delegation”) 11]. Several authors have suggested further bound by a clasg.X in subgroupy’, giving rise to a simi-

14

lar form of shared multiple inheritance as in Jx. Two important dif-
ferences, however, are the fact that further binding does not imply
subtyping:g’. X is not a subtype of.X, and explicit inheritance
takes precedence over implicit overriding when resolving method

calls. Jolly et al. present a type system and soundness proof (though

[8] Michale Hohmuth and Hendrik Tews. The semantics of C++ data
types: Towards verifying low-level system components. In D. Basin
and B. Wolff, editors,Theorem Proving in Higher Order Logics,
Emerging Trends Procpages 127-144. UniveraitFreiburg, 2003.
Tech. Rep. 187.

not machine-checked) for Concord. Because repeated multiple in- [9] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus

heritance is not supported in either Jx or Concord, the semantics

for these languages can represent the run-time type of an object)
h[lO] Gerwin Klein and Tobias Nipkow. A machine-checked model for a

as a simple type, and there is no need for the subobject and pat
information required for modeling C++.

Scala [L6] provides a mechanism for symmetrical mixin inher-
itance [] in which a class can inherit members from multiple su-

perclasses. If members are inherited from two mixin classes, the

inheriting class has to resolve the conflict by providing an explicit

overriding definition. Scala side-steps the issue of shared vs. re-

peated multiple inheritance by simply disallowing a class to (indi-

Ostermann. Simple dependent types: ConcordRrbct. of FTfIP'05
2005.

Java-like language, virtual machine and compile&M TOPLAS To
appear.

[11] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. Rroc. of OOPSLA'86pages
214-223, 1986.

[12] Ole Lehrmann Madsen and Birger Moeller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented programming Phoc. of
OOPSLA'89 pages 397-406, 1989.

rectly) inherit from a class that encapsulates state more than once[13; Ropin Milner. A theory of type polymorphism in programming.

(multiply inheriting from abstract classes that do not encapsulate
state—called traits—is allowed, however). The semantic founda-

tions of Scala, including a type system and soundness proof can be

found in [17].

11. Conclusion

We have presented an operational semantics and type-safety proof

for multiple inheritance in C++. The semantics precisely models
the behavior of method calls, field accesses and two forms of
casts in C++ class hierarchies, and allows one—for the first time—
to understand the behavior of these operations without referring
to implementation-level data structures such as virtual function
pointer tables (v-tables). The type-safety proof was formalized and
machine-checked using Isabelle/HOL.

The paper discusses C++ features in the light of the formal

analysis, discusses a number of subtleties in the design of C++
that we encountered during the construction of the semantics, and

provides some background about its evolution. Trying to put C++

on a formal basis has been interesting but quite challenging at

times. It was great fun figuring out what C++ means at an abstract

level, and this exercise has demonstrated that its mixture of shared

and repeated multiple inheritance gives rise to a lot of additional
complexity at the semantics level. Our work opens the door to

machine-checked correctness proofs of transformations such as the

automated elimination of multiple inheritance from C++ programs.

References

[1] David Aspinall. Proof General — a generic tool for proof
development. In S. Graf and M.l. Schwartzbach, editdosls and
Algorithms for Construction and Analysis of Systems, TACAS, 2000
volume 1785 ofLect. Notes in Comp. Scpages 38—42. Springer-
Verlag, 2000.

[2] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. A natural
semantics for eiffel dynamic bindind\CM TOPLAS$18(6):711-729,
1996.

[3] Gilad Bracha and William Cook. Mixin-based inheritance.Piroc.
of OOPSLA/ECOOP'9(pages 303-311, 1990.

[4] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with
coercions. InProc. ACM Conf. LISP and functional programmijng
pages 44-60. ACM Press, 1990.

[5] Luca Cardelli. A semantics of multiple inheritandaformation and
Computation76:138-164, 1988.

[6] Luca Cardelli. Type systems. Ifhe Computer Science and
Engineering Handbook edition, 2004.

[7] Sophia Drossopoulou and Susan Eisenbach. Java is type safe —
probably. InProc. of ECOOP’97 volume 1241 of_ect. Notes in
Comp. Scj.pages 389-418, 1997.

15

Journal of Computer and System Sciendg43):348-375, 1978.

[14] Tobias Nipkow, Lawrence Paulson, and Markus Wenzida-
belle/HOL — A Proof Assistant for Higher-Order Logiolume
2283 ofLect. Notes in Comp. Sc2002. http://www.in.tum.
de/"nipkow/LNCS2283/

[15] Nathaniel Nystrom, Stephen Chong, and Andrew. C. Myers. Scalable

extensibility via nested inheritance. Rroc. of OOPSLA'04pages

99-115, 2004.

[16] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, &hane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. An overview of the
Scala programming language. Technical Report IC/200464le
Polytechnique Ecérale de Lausanne, Lausanne, Switzerland, 2004.
Available fromscala.epfl.ch

[17] Martin Odersky, Vincent Cremet, Christined&kl, and Matthias
Zenger. A nominal theory of objects with dependent typesPric.
of ECOOP’03

[18] Benjamin C. PierceTypes and Programming Languagekhe MIT
Press, 2002.

[19] G. Ramalingam and Harini Srinivasan. A member lookup algorithm
for c++. InProc. of PLDI '97, pages 18-30, 1997.

[20] Jonathan G. Rossie, Jr. and Daniel P. Friedman. An algebraic
semantics of subobjects. Rroc. of OOPSLA'95pages 187-199.
ACM Press, 1995.

[21] Jonathan G. Rossie, Jr., Daniel P. Friedman, and Mitchell Wand.

Modeling subobject-based inheritance. Rroc. of ECOOP’'96

volume 1098 ol ect. Notes in Comp. Scpages 248-274, 1996.

[22] Adam Seligman.FACTS: A formal analysis for C++ Williams
College, 1995. Undergraduate thesis.

[23] Gregor Snelting and Frank Tip. Understanding class hierarchies using
concept analysisACM TOPLASpages 540-582, 2000.

[24] Gregor Snelting and Frank Tip. Semantics-based composition of
class hierarchies. IRroc. of ECOOP’02volume 2374 ot.ect. Notes
in Comp. Scj.pages 562-584, 2002.

[25] Mirko Streckenbach and Gregor Snelting. Refactoring class
hierarchies with kaba. I®roc. of OOPSLA'04pages 315-330,
2004.

[26] Bjarne Stroustrup. Multiple inheritance for C+&omputing Systems
2(4), 1989.

[27] Bjarne Stroustrup.The Design and Evolution of C++ Addison
Wesley, 1994.

[28] Bjarne Stroustrup.The C++ Standard: Incorporating Technical
Corrigendum No. 1John Wiley, 2 edition, 2003.

[29] Peter F. Sweeney and Michael G. Burke. Quantifying and evaluating
the space overhead for alternative C++ memory layo8tsftware:
Practice and Experienc&3(7):595-636, 2003.

[30] Peter F. Sweeney and Joseph Gil. Space and time-efficient memory
layout for multiple inheritance. IRroc. of OOPSLA'99pages 256—
275, 1999.

http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/

[31] Ewan Tempero and Robert Biddle. Simulating multiple inheritance
in Java.Journal of Systems and Softwaf&:87-100, 2000.

[32] Krishnaprasad Thirunarayan,u@ter Kniesel, and Haripriyan
Hampapuram. Simulating multiple inheritance and generics in Java.
Computer Language®5:189-210, 1999.

[33] Frank Tip and Peter Sweeney. Class hierarchy specializafiota
Informaticg 36:927-982, 2000.

[34] John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is
a viable alternative to multiple inheritance in class based languages.
Technical Report CS-98-3, University of Virginia, 1998.

[35] Charles Wallace. The semantics of the C++ programming language.
In E. Borger, editor,Specification and Validation Methodsages
131-164. Oxford University Press, 1995.

[36] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip.
An Operational Semantics and Type Safety Proof for C++-like
Multiple Inheritance. Technical Report RC23709, IBM, 2005.

[37] Markus Wenzel. Isabelle/lsar — A Versatile Environment for
Human-Readable Formal Proof DocumentBhD thesis, Institut
fur Informatik, Technische Univergit Miinchen, 2002. http:
/ltumb1.biblio.tu-muenchen.de/publ/diss/in/
2002/wenzel.html

[38] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundnessdnformation and Computatiqr{115):38—-94, 1994.

[39] Yoav Zibin and Joseph Gil. Two-dimensional bi-directional object
layout. InProc. of ECOOP’03volume 3013 of.ect. Notes in Comp.
Sci, pages 329-350, 2003.

16

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

	Introduction
	Multiple inheritance
	An intuitive introduction to subobjects
	The Rossie-Friedman Subobject Model
	Casts in C++
	Examples

	Formalization
	Basic notation --- The meta language
	Names, paths, and base classes
	Subobjects
	Path functions

	Abstract syntax of CoreC++
	References
	Values and Expressions
	Programs

	Type system
	Typing rules
	Cast
	Variable assignment and binary operators
	Field access and assignment
	Method call

	Well-formed programs

	Big Step Semantics
	State
	Exceptions
	Evaluation
	Object creation
	Cast
	Variable assignment
	Binary operators
	Field access and assignment
	Method call

	Small Step Semantics

	Type Safety Proof
	Run-time type system
	Conformance and Definite Assignment
	Progress
	Preservation
	The type safety proof

	Evolution of the Semantics
	Addresses, references and object structure
	Eliminating exceptions by using static type information

	Working with Isabelle
	Related work
	Semantics of Multiple Inheritance
	C++ Multiple Inheritance
	Other Languages with Multiple Inheritance

	Conclusion

