
Parameterized Dynamic Tables

Tobias Nipkow1

Technische Universität München

Abstract

We analyze the amortized complexity of dynamic tables with arbitrary minimal
and maximal load factors and arbitrary expansion and contraction factors.

Keywords: amortized complexity, dynamic tables, machine-checked proof

1. Introduction

One of the standard examples of amortized analysis are dynamic tables [2]
that support insertion and deletion of elements. The size of the table is doubled
when it overflows and it is halved when less than a quarter of the table is
occupied.

For the analysis of dynamic tables we abstract the system state to a pair
(n, l) where n is the number of elements in the table and l the size of the table.
The quotient n/l is the load factor.

Generalized dynamic tables are parameterized by the minimal and maximal
load factors (1/4 and 1 above) and the expansion and contraction factors (both
2 above). The aims of this paper are very modest: we do not present a new
data structure for dynamic tables (e.g. [1]), we merely parameterize the standard
dynamic tables and analyze in detail the amortized complexity of insertion and
deletion as a function of these parameters.

The formal parameters are:

f1, f2 > 0 are the lower and upper bounds of the load factor

e, c > 1 are the expansion and contraction factors

Upon expansion, l is muliplied by e and upon contraction l is divided by c, and
the invariant f1 ≤ n/l ≤ f2 must be maintained by expansion and contraction.
Expanding a table with load factor f2 leads to the load factor f2/e, contracting
a table with load factor f1 leads to the load factor f1c. Thus we need f1 ≤ f2/e
and f1c ≤ f2. In fact we require the strict versions

f1 < f2/e (1)

f1c < f2 (2)

URL: http://www.in.tum.de/~nipkow (Tobias Nipkow)
1Research supported by DFG grant NI 491/16-1

Preprint submitted to Elsevier June 29, 2015



for reasons explained below. These are already the key constraints that guaran-
tee constant amortized complexity for insertion and deletion. For an intuitive
explanation look at the following typical behaviour of the load factor under con-
traction and expansion: it increases from f1 to f ′1 := f1c and decreases from f2
to f ′2 := f2/e.

f1 f ′1 f ′2 f2

c
e

Contraction and expansion need to copy f1l and f2l many elements. Spreading
this cost over (f ′1− f1)l and (f2− f ′2)l leads to the following amortized costs for
a single insertion and deletion step:

ai := f2/(f2 − f ′2) ad := f1/(f ′1 − f1) (aid)

However, there is second possible relationship among the parameters depicted
in the following diagram:

f1 f ′2f ′1 f2

c
e

To cater for both situations we need to set

f ′1 := min (f1c) (f2/e) f ′2 := max (f1c) (f2/e) (f ′12)

rather than the naive setting of f ′1 and f ′2 before. From now on we assume the
definitions (aid) and (f ′12). Together with (1) and (2) it follows that

f ′1/c ≤ f1 f2 ≤ f ′2e f1 ≤ f ′2/c f ′1e ≤ f2

Furthermore note the following consequences of (1), (2), (aid), (f ′12), f1 > 0,
and e, c > 1:

0 < f1 < f ′1 ≤ f ′2 < f2 1 < ai 0 < ad

Now we consider initialization. The standard dynamic tables start with
(0, 0), expand to (1, 1) with the next insertion and only double the size after-
wards. That precise schema no longer works for generalized dynamic tables. If
f2 < 1, the state (1, 1) is not admissible. Thus we need an initial size l0 such
that 1 ≤ f2l0 (and maybe other constraints on l0). A second problem arises
with non-integral e or c (or if e 6= c). Then for small table sizes contraction
may let the load factor drop below f1. For example, let f1 = 1/3 and c = 3/2.
Deleting an element from the state (2, 6) requires contraction and leads to (1, 4).
Therefore we allow the load factor to drop below f1 for small table sizes. We
introduce the parameter l0 and let the initial table be (0, l0). Contraction takes
place only if l ≥ cl0, otherwise the load factor may drop below f1.

2



The rest of the paper we analyze two models, where l is a real and one where
l is a natural number.

Because we can model operations on tables as side effect free functions on
pairs (n, l), we employ functional programming notation: functions with two
parameters are written as f x y rather than f(x, y) and if-then-else returns
either branch as a result.

2. Real length

In this version of the tables, n is a natural number but l is a non-negative
real number. This abstracts a system where the actual table has size blc, but we
also carry around the real l that records the idealized length of the table, which
can be non-integral if c or e are not integers or c 6= e. This allows us to focus
on the core of the problem without the complications introduced by rounding.

First we define the behaviour of our generalized dynamic tables precisely.
There are two operations Ins and Del whose behaviour is defined by the follow-
ing next-state function nxt :

nxt Ins (n, l) = (n + 1, if n + 1 ≤ f2l then l else el)
nxt Del (n, l) =
(n − 1, if f1l ≤ n − 1 then l else if l0 ≤ l/c then l/c else l)

The behaviour of Ins is obvious; Del implements the decision to contract only
if l does not drop below l0. For natural numbers we assume 0 − 1 = 0.

The execution time t is the number of elements that need to be copied:

t Ins (n, l) = (if n + 1 ≤ f2l then 1 else n + 1)

t Del (n, l) = (if f1l ≤ n − 1 then 1 else if l0 ≤ l/c then n else 1)

2.1. Invariant

The invariant expresses that the table size does not drop below l0, the load
factor does not drop below f1 as long as cl0 ≤ l and the load factor never exceeds
f2:

l0 ≤ l ∧ (l0 ≤ l/c −→ f1l ≤ n) ∧ n ≤ f2l (Inv)

However, l0 needs to be large enough to guarantee invariance of (Inv):

1/(f1(c − 1)) ≤ l0 (3)
1/(f2(e − 1)) ≤ l0 (4)

Note that (4) implies 0 < l0 because 0 < f2 and 1 < e.

Theorem 1. Under the conditions (1)–(4), (Inv) is invariant.

Proof. It is easy to see that the invariant holds in the initial state (0, l0).
Now we prove that the invariant is preserved by insertion. If n + 1 ≤ f2l,

this is trivial. Now assume f2l < n + 1, i.e., expansion. Of course l0 ≤ el

3



because l0 ≤ l and 1 < e. From (1) it follows that f1(el) ≤ f2l and thus f1(el)
≤ n + 1. From n + 1 ≤ f2l + 1 (because n ≤ f2l), (4) and l0 ≤ l it follows
that n + 1 ≤ f2(el).

Finally we prove that the invariant is preserved by deletion. If f1l ≤ n −
1, this is trivial. Now assume n − 1 < f1l. If l/c < l0, the table does not
contract and (Inv) is easily seen to be preserved. Now consider the contraction
case where l0 ≤ l/c. Combining this with (3) yields f1(l/c) ≤ f1l − 1. Together
with f1l ≤ n (because l0 ≤ l/c) we obtain f1(l/c) ≤ n − 1. From (2) we obtain
f1l ≤ f2(l/c) which implies n − 1 ≤ f2(l/c) because n − 1 < f1l.

2.2. Amortized Complexity

The gist of the potential function is shown in the figure below:

0 f1 f ′1 f ′2 f2

f1

0

f2

n/l

Φ
(n
,l

)/
l

The x axis shows the load factor, the y axis the potential normalized by l for
load factors between f1 and f2. Going downward from f ′1 and upward from
f ′2, the potential reaches f1l and f2l, exactly enough to pay for the impending
contraction and expansion. Between f ′1 and f ′2 the potential is 0.

This behaviour of Φ applies in the situation where l/c ≥ l0. If l/c < l0,
where we do not contract anymore, we set Φ to 0 between f1 and f ′1 as well.
The precise and full definition if Φ is as follows:

Φ (n, l) =
(if f ′2l ≤ n then ai(n − f ′2l)
else if n ≤ f ′1l ∧ l0 ≤ l/c then ad(f ′1l − n) else 0)

For fixed l, Φ is of the form Ψ n =

if x 2 ≤ n then i(n − x 2) else if n ≤ x 1 ∧ b then d(x 1 − n) else 0

The following lemma is proved by an easy exhaustive case analysis:

Lemma 1. If i > 0 and d ≥ 0 then Ψ (n+1) − Ψ n ≤ i.

The analogous lemma for deletion needs additional assumptions:

Lemma 2. If i > 0, d ≥ 0, n 6= 0 and x 1 ≤ x 2 then Ψ (n−1) − Ψ n ≤ d.

Proof. The proof is a similar exhaustive case analysis. We consider only the
case that requires x 1 ≤ x 2. Assume ¬ x 2 ≤ n − 1, n − 1 ≤ x 1 ∧ ¬ b and x 2

≤ n:

4



Ψ (n−1) − Ψ n = d(x 1 − (n − 1)) − i(n − x 2)
≤ d(x 1 − (n − 1)) = d + d(x 1 − n)
≤ d because x 1 ≤ x 2 ≤ n

In order to prove the desired amortized complexity we need two more lower
bounds for l0 that guarantee that after an expansion or contraction there is at
least one normal step that can pay for the next expansion or contraction, i.e.,
the intervals [f1, f

′
1] and [f ′2, f2] must be large enough:

1/((f ′1 − f1)c) ≤ l0 (5)
1/(f2 − f ′2) ≤ l0 (6)

Theorem 2. Under the conditions (1)–(6), the amortized complexity of inser-
tion and deletion is ≤ ai + 1 and ad + 1.

Proof. It is easy to see that potential of the initial state (0, l0) is 0. Moreover,
the potential is clearly never negative.

Now we assume that (Inv) holds and let s = (n, l). First we show

A := t Ins s + Φ (nxt Ins s) − Φ s ≤ ai + 1 (∗)

In the non-expansion case, i.e., if n + 1 ≤ f2l, t Ins s = 1 and nxt Ins s = (n
+ 1, l). Therefore Lemma 1 applies and thus A = 1 + ai. Now assume f2l <
n + 1. Then t Ins s = n + 1. Moreover, Φ s = ai(n − f ′2l) because f ′2l ≤
n because f2l < n + 1 and 1 ≤ (f2 − f ′2)l because l0 ≤ l and (6). By case
analysis we prove A ≤ n − ai(f2 − f ′2)l + ai + 1, which implies A ≤ n − f2l
+ ai + 1 (by def. of ai) and hence (∗) because n ≤ f2l (Inv). If f ′2(el) ≤ n +
1 then Φ (nxt Ins s) = ai(n + 1 − f ′2(el)). Therefore

A = n + 1 + ai(n + 1 − f ′2(el)) − ai(n − f ′2l)
= n − ai(f

′
2e − f ′2)l + ai + 1

≤ n − ai(f2 − f ′2)l + ai + 1 because f2 ≤ f ′2e

Now assume n + 1 < f ′2(el). From f ′1e ≤ f2 it follows that f ′1(el) ≤ f2l.
Together with f2l < n + 1 this yields f ′1el < n + 1 and thus Φ (nxt Ins s) = 0.
Thus:

A = n + 1 − ai(n − f ′2l)
= n − ai(n + 1 − f ′2l) + ai + 1
≤ n − ai(f2 − f ′2)l + ai + 1 because f2l < n + 1

Thus we have proved (∗). Now we show

A := t Del s + Φ (nxt Del s) − Φ s ≤ ad + 1 (∗∗)

If n = 0 then (Inv) implies l/c < l0 and thus t Del s = 1, Φ s = 0, nxt Del s = s
and thus A = 1. We treat n = 0 separately because if 0 < n the expression n
− 1 does not require a case analysis to take care of 0 − 1 = 0. Now assume 0
< n. In the non-contraction cases, i.e., if l/c < l0 or f1l ≤ n − 1, t Del s = 1
and nxt Del s = (n − 1, l). Therefore Lemma 2 applies (because f ′1 ≤ f ′2) and

5



thus A ≤ 1 + ad. Now we consider the contraction case: n − 1 < f1l and thus
t Del s = n. From (5) and l0 ≤ l/c it follows that 1 ≤ (f ′1 − f1)l and thus n
< f ′1l because n − 1 < f1l. Hence Φ s = ad(f ′1l − n) using f ′1 ≤ f ′2. By case
analysis we prove A ≤ n − ad(f ′1 − f1)l + ad, which implies A ≤ n − f1l +
ad (by def. of ad) and hence (∗∗) because n − 1 < f1l. In case n − 1 < f ′1(l/c)
∧ l0 ≤ l/c/c then Φ (nxt f s) = ad(f ′1l/c − (n − 1)), because n − 1 < f ′2(l/c)
(because n − 1 < f1l and f1 ≤ f ′2/c). Thus A = n + ad(f ′1(l/c) − (n − 1))
− ad(f ′1l − n) = n + ad(f ′1/c − f ′1)l + ad ≤ n + ad(f1 − f ′1)l + ad (because
f ′1/c ≤ f1). In case ¬ (n − 1 < f ′1(l/c) ∧ l0 ≤ l/c/c) then Φ (nxt f s) = 0
again because n − 1 < f ′2(l/c). Thus A = n + ad(n − f ′1l) = n + ad(n − 1
− f ′1l) + ad ≤ n − ad(f ′1 − f1)l + ad (because n − 1 < f1l).

2.3. Optimal Parameters

The fact that Φ is 0 between f ′1 and f ′2 is clearly suboptimal. The optimal
situation is f ′1 = f ′2, i.e., f1c = f2/e. Thus we can eliminate one of our four
parameters and we choose f1:

f1 = f2/(ec) (7)

In this case one constraint for l0 suffices:

ec/(f2(min e c − 1)) ≤ l0 (8)

From (8) we obtain immediately that

ec/(f2(e − 1)) ≤ l0 (9)
ec/(f2(c − 1)) ≤ l0 (10)

Because e,c > 1, this implies (3) and (4). Thus we have the following corollary
to Theorem 1.

Corollary 1. Under conditions (1), (2), (7) and (8), (Inv) is invariant.

Optimality requires

f ′1 = f ′2 = f2/e. (11)

Together with (9) this implies (6), and together with (10) this implies (5) (be-
cause e,c > 1). Thus we have the following corollary to Theorem 2:

Corollary 2. Under conditions (1), (2), (7) and (8), the amortized complexity
of insertion and deletion is ≤ ai + 1 and ad + 1 where ai = e/(e − 1) and ad
= 1/(c − 1).

The values for ai and ad follow directly from the definitions of ai and ad together
with (7) and (11). The following table shows a few concrete optimal parameter
settings (with minimal values for l0).

f1 f2 e c l0
1/4 1 2 2 4
1/5 4/5 2 2 5

1/10 9/10 3 3 5
1/3 1 3/2 2 6

6



3. Integer length

In this version of the tables, n, l and l0 are natural numbers. This is the
standard model of dynamic tables. However, we do not assume that e and c are
the same integers. Hence expansion and contraction may require conversions to
integers. We modify nxt and (Inv) by replacing el by dele and l/c by bl/cc. In
fact, (Inv) remains unchanged because l0 ≤ bl/cc ←→ l0 ≤ l/c because l0 is an
integer.

3.1. Invariant

The invariant is no longer preserved under the original constraints, i.e., The-
orem 1 no longer holds. For expansion (f2l < n + 1) and contraction (n − 1
< f1l) we could prove f1(el) ≤ n + 1 and n − 1 ≤ f2(l/c) but f1dele ≤ n + 1
and n − 1 ≤ f2bl/cc do not necessarily hold. However, two more lower bounds
for l0 solve the problem:

f1/(f2 − f1e) ≤ l0 (12)
f2/(f2 − f1c) ≤ l0 (13)

Theorem 3. Under the conditions (1)–(4), (12) and (13), (Inv) is invariant.

Proof. It is easy to see that the invariant holds in the initial state.
Now we prove that the invariant is preserved by insertion. If n + 1 ≤ f2l,

this is trivial. Now assume f2l < n + 1, i.e., expansion. From (12), (1) and l0
≤ l we obtain f1 ≤ (f2 − f1e)l and thus f1dele ≤ f1(el + 1) ≤ f2l < n + 1.
From n + 1 ≤ f2l + 1 (because n ≤ f2l), (4) and l0 ≤ l it follows that n + 1
≤ f2(el) ≤ f2dele.

Finally we prove that the invariant is preserved by deletion. If f1l ≤ n −
1, this is trivial. Now assume n − 1 < f1l. If l/c < l0, the table does not
contract and (Inv) is easily seen to be preserved. Now consider the contraction
case where l0 ≤ l/c. Combining this with (3) yields f1(l/c) ≤ f1l − 1. Together
with f1l ≤ n (because l0 ≤ l/c) we obtain f1bl/cc ≤ f1(l/c) ≤ n − 1. From
(13), (2) and l0 ≤ l/c we obtain f1l ≤ f2(l/c − 1) and thus n − 1 < f1l ≤
f2(l/c − 1) ≤ f2bl/cc.

We also need to increase the amortized complexity of insertion and deletion.
In the proof of Theorem 2 we could show that after an expansion, the load factor
must be ≥ f ′1 and after a contraction it must be ≤ f ′2. This is no longer the
case due to floor and ceiling and cannot be fixed by increasing l0 either. The
problem is that the load factor may drop just a little below f ′1 or rise a little
above f ′2. To compensate for this we widen the interval [f ′1, f

′
2].

First we analyze a system parameterized by two constants f ′′1 and f ′′2 subject
to certain constraints. Then we define f ′′1 and f ′′2 and prove that for large enough
l0 the constraints are satisfied. Essentially, f ′′1 and f ′′2 take the place of f ′1 and
f ′2 but should be a bit smaller/larger:

7



f1 < f ′′1 < f ′1 f ′2 < f ′′2 < f2 (14)
1 ≤ (f ′′1 − f1)cl0 (15)
1 ≤ (f2 − f ′′2 )l0 (16)

Constraints (15) and (16) replace (5) and (6). Of course ai and ad are redefined
analogously:

ai = f2/(f2 − f ′′2 ) ad = f1/(f ′′1 − f1)

In addition we need

l0 ≤ l =⇒ f ′′1 (l + 1) ≤ f ′1l (17)
l0 ≤ l =⇒ f ′2l ≤ f ′′2 (l − 1) (18)

Theorem 4. Under the conditions (1)–(4), (12)–(18), the amortized complexity
of insertion and deletion is ≤ ai + 1 and ad + 1.

Proof. We redefine Φ by replacing f ′1 and f ′2 by f ′′1 and f ′′2 . The non-expansion
and non-contraction cases of the proof are the same as in the proof of Theorem 2.
Although the definition of Φ has changed, Lemmas 1 and 2 still apply because
ai, ad > 0, f ′1 ≤ f ′2 and (14).

Assume (Inv) and s = (n, l). First we prove the expansion case (f2l < n +
1, t Ins s = n + 1) of

A := t Ins s + Φ (nxt Ins s) − Φ s ≤ ai + 1 (∗)

From (16) and l0 ≤ l we obtain 1 ≤ (f2 − f ′′2 )l and thus f ′′2 l ≤ n because f2l
< n + 1. Thus Φ s = ai(n − f ′′2 l). By case analysis we prove A ≤ n − ai(f2
− f ′′2 )l + ai + 1, which implies A ≤ n − f2l + ai + 1 (by def. of ai) and hence
(∗) because n ≤ f2l (Inv). If f ′′2 dele ≤ n + 1 then Φ (nxt Ins s) = ai(n + 1 −
f ′2(el)). Therefore

A = n + 1 + ai(n + 1 − f ′′2 dele) − ai(n − f ′2l)
= n − ai(f

′′
2 dele − f ′′2 l) + ai + 1

≤ n − ai(f2 − f ′′2 )l + ai + 1 because f2 ≤ f ′2e and (14)

Now assume n + 1 < f ′′2 dele. We have f ′′1 dele ≤ f ′′1 (el + 1) ≤ f ′1(el) ≤ f2l ≤ n
+ 1 by l0 ≤ el, (17) and f ′1e ≤ f2. Together with n + 1 < f ′′2 dele this implies
Φ (nxt Ins s) = 0. Therefore

A = n + 1 − ai(n − f ′′2 l)
= n − ai(n + 1 − f ′′2 l) + ai + 1
≤ n − ai(f2 − f ′′2 )l + ai + 1 because f2l < n + 1

Thus we have proved (∗). Now we show for the contraction case (n − 1 < f1l
and l0 ≤ bl/cc and thus t Del s = n) that

A := t Del s + Φ (nxt Del s) − Φ s ≤ ad + 1 (∗∗)

From (15), l0 ≤ l/c and f1 < f ′′1 it follows that 1 ≤ (f ′′1 − f1)l and thus that
n < f ′′1 l because n − 1 < f1l. Moreover f ′′1 ≤ f ′′2 because of (14) and f ′2 ≤

8



f ′1. Hence Φ s = ad(f ′′1 l − n). We also have n − 1 < f ′′2 bl/cc: n − 1 < f1l
≤ f ′2(l/c) ≤ f ′′2 (l/c − 1) ≤ f ′′2 bl/cc because f1 ≤ f ′2/c, (18) and l0 ≤ l/c. By
case analysis we prove A ≤ n − ad(f ′′1 − f1)l + ad, which implies A ≤ n −
f1l + ad (by def. of ad) and hence (∗∗) because n − 1 < f1l. In case n − 1 <
f ′′1 bl/cc ∧ l0 ≤ bbl/cc/cc then Φ (nxt f s) = ad(f ′′1 bl/cc − (n − 1)) because n
− 1 < f ′′2 bl/cc, n − 1 < f1l and l0 ≤ bl/cc. Therefore

A = n + ad(f ′′1 bl/cc − (n − 1)) − ad(f ′′1 l − n)
≤ n + ad(f ′′1 (l/c) − (n − 1)) − ad(f ′′1 l − n)
= n − ad(f ′′1 − f ′′1 /c)l + ad
≤ n − ad(f ′′1 − f1)l + ad by (14) and f ′1/c ≤ f1

In case ¬ (n − 1 < f ′′1 bl/cc ∧ l0 ≤ bbl/cc/cc) then Φ (nxt f s) = 0 because n
− 1 < f ′′2 bl/cc, n − 1 < f1l and l0 ≤ bl/cc. Therefore

A = n − ad(f ′′1 l − n)
= n − ad(f ′′1 l − (n − 1)) + ad
≤ n − ad(f ′′1 − f1)l + ad because n − 1 ≤ f1l

Now we show that the constraints for f ′′1 and f ′′2 are satisfied for certain
definitions of f ′′1 and f ′′2 given certain additional lower bounds for l0:

Lemma 3. Let f ′′1 = f ′1l0/(l0 + 1) and f ′′2 = f ′2l0/(l0 − 1). Then

(f2 + 1)/(f2 − f ′2) ≤ l0 (19)
(f ′1c + 1)/((f ′1 − f1)c) ≤ l0 (20)
f1/(f ′1 − f1) < l0 (21)
f2/(f2 − f ′2) < l0 (22)

imply (14) – (18)

Proof. First note that 1 < l0 because f ′2 < f2 and (22). By definition of f ′′1 it
follows that f ′′1 < f ′1 and that f1 < f ′′1 ←→ f1/(f ′1 − f1) < l0 and hence that
f1 < f ′′1 because of (21). Similarly we obtain f ′2 < f ′′2 and f ′′2 < f2 from 1 <
l0 and (22). Thus we have proved (14). From (20), f1 < f ′1 and the def. of f ′′1
we obtain 1 ≤ (f ′1 − f1)cl0 − f ′1c = (f ′1(l0 − 1)/l0 − f1)cl0 ≤ (f ′1l0/(l0 + 1)
− f1)cl0 = (f ′′1 − f1)cl0 and thus (15). From the def. of f ′′2 , 1 < l0, (19) and
f ′2 < f2 it follows that 1 ≤ (f2 − f ′′2 )(l0 − 1) and thus (16). For the proof of
(17) assume l0 ≤ l. Together with 0 < l0 and the def. of f ′′1 this implies f ′′1 (l
+ 1) = f ′1(l0/(l0 + 1))(l + 1) ≤ f ′1(l/(l + 1))(l + 1) = f ′1l and thus (17). For
the proof of (18) assume l0 ≤ l. Together with 1 < l0 and the def. of f ′′2 this
implies f ′2l = f ′2l + f ′2((l0 − 1)/(l0 − 1) − 1) ≤ f ′2l + f ′2((l − 1)/(l0 − 1) −
1) = f ′′2 (l − 1) and thus (18).

4. Conclusion

The preceding analysis is not very deep mathematically but full of cases and
details. In order to guard against errors, all proofs [4] have been checked with
the help of the Isabelle theorem prover by building on a framework for amortized
analysis proofs [3].

9



5. References

[1] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick.
Resizable arrays in optimal time and space. In F. K. H. A. Dehne,
A. Gupta, J. Sack, and R. Tamassia, editors, Algorithms and Data Struc-
tures, WADS’99, volume 1663 of LNCS, pages 37–48. Springer, 1999.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 2009.

[3] T. Nipkow. Amortized complexity verified. In C. Urban and X. Zhang,
editors, Interactive Theorem Proving (ITP 2015), volume 9236 of LNCS.
Springer, 2015. http://in.tum.de/∼nipkow/pubs/itp15.html.

[4] T. Nipkow. Parameterized dynamic tables. Archive of Formal Proofs, 2015.
http://afp.sf.net/entries/Dynamic Tables.shtml, Formal proof development.

10

http://in.tum.de/~nipkow/pubs/itp15.html
http://afp.sf.net/entries/Dynamic_Tables.shtml

	Introduction
	Real length
	Invariant
	Amortized Complexity
	Optimal Parameters

	Integer length
	Invariant

	Conclusion
	References

