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Abstract. We present a novel compiled approach to Normalization by
Evaluation (NBE) for ML-like languages. It supports efficient normal-
ization of open λ-terms w.r.t. β-reduction and rewrite rules. We have
implemented NBE and show both a detailed formal model of our imple-
mentation and its verification in Isabelle. Finally we discuss how NBE is
turned into a proof rule in Isabelle.

1 Introduction

Symbolic normalization of terms w.r.t. user provided rewrite rules is one of the
central tasks of any theorem prover. Several theorem provers (see §5) provide
especially efficient normalizers which have been used to great effect [9,14] in car-
rying out massive computations during proofs. Existing implementations per-
form normalization of open terms either by compilation to an abstract machine
or by Normalization by Evaluation, NBE for short. The idea of NBE is to carry
out the computations by translating into some underlying functional language,
evaluating there, and translating back. The key contributions of this paper are:

1. A novel compiled approach to NBE that exploits the pattern matching al-
ready available in a decent functional language, while allowing the normal-
ization of open λ-terms w.r.t. β-reduction and a set of (possibly higher-order)
rewrite rules.

2. A formal model and correctness proof3 of our approach in Isabelle/HOL [15].

NBE is implemented and available at the user-level in Isabelle 2007, both to
obtain the normal form t′ of some given term t, and as a proof rule that yields
the theorem t = t′.

Throughout the paper we refer to the underlying functional language as ML.
This is only for brevity: any language in the ML family, including Haskell, is
suitable. However, we assume that the language implementation provides its
own evaluator at runtime, usually in the form of some compiler. The guiding
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principle of our realization of NBE is to offload as much work as possible onto
ML: not just substitution but also pattern matching. Thus the word ‘compiled’
in the title refers to both the translation from the theorem prover’s λ-calculus
into ML and from ML to some byte or machine code. The trusted basis of the
theorem prover is not extended if the compiler used at runtime is the same as
the one compiling the theorem prover.

2 Normalization by Evaluation in ML

Normalization by Evaluation uses the evaluation mechanism of an underlying
metalanguage to normalize terms, typically of the λ-calculus. By means of an
evaluation function [[·]]ξ, or, alternatively by compiling and running the compiled
code, terms are embedded into this metalanguage. In other words, we now have
a native function in the implementation language. Then, a function ↓, which acts
as an “inverse of the evaluation functional” [5], serves to recover terms from the
semantics. This process is also known as “type-directed partial evaluation” [7].

Normalization by Evaluation is best understood by assuming a semantics
enjoying the following two properties.

– Soundness: if r → s then [[r]]ξ = [[s]]ξ, for any valuation ξ.
– Reproduction: if r is a term in normal form, then ↓ [[r]]↑ = r with ↑ a special

valuation.

These properties ensure that ↓ [[r]]↑ actually yields a normal form of r if it exists.
Indeed, let r →∗ s with s normal; then ↓ [[r]]↑ =↓ [[s]]↑ = s.

We implement untyped normalization by evaluation [1] in ML. To do so, we
need to construct a model of the untyped λ-calculus, i.e., a data type containing
its own function space. Moreover, in order to make the reproduction property
possible, our model ought to include some syntactical elements in it, like con-
structors for free variables of our term language. Fortunately, ML allows data
types containing their own function space. So we can simply define a universal
type Univ like the following.

datatype Univ =
Const of string * Univ list

| Var of int * Univ list
| Clo of int * (Univ list -> Univ) * Univ list

Note how the constructors of the data type allow to distinguish between basic
types and proper functions of implementation language. In type-directed partial
evaluation such a tagging is not needed, as the type of the argument already tells
what to expect; on the other hand, this need of anticipating what argument will
come restricts the implementation to a particular typing discipline, whereas our
untyped approach is flexible enough to work with any form of rewrite calculus.

The data type Univ represents the embedding of the syntax and the embed-
ding of the function space. There is no constructor for application. The reason is
that semantical values of the λ-calculus correspond to normal terms, whereas an
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application of a function to some other value, in general, yields a redex. There-
fore application is implemented by a function apply: Univ -> Univ -> Univ
discussed below. The constructor Const serves to embed constructors of data
types of the underlying theory; they are identified by the string argument. Nor-
mal forms can have the shape C t1 . . . tk of a constructor C applied to several
(normal) arguments. Therefore, we allow Const to come with a list of arguments,
for convenience of the implementation in reverse order. In a similar manner, the
constructor Var is used to represent expressions of the form x t1 . . . tk with x a
variable.

The constructor Clo represents partially applied functions. More precisely,
“Clo (n, f , [ak,. . . ,a1])” represents the (n+k)-ary function f applied to a1, . . . , ak.
This expression needs another n arguments before f can be evaluated. In the
case of the pure λ-calculus, n would always be 1 and f would be a value ob-
tained by using (Standard) ML’s “fn x => . . . ” function abstraction. Of course,
ML’s understanding of the function space is bigger than just the functions that
can be obtained by evaluating a term in our language. For example, recursion
can be used to construct representation for infinite terms. However, this will
not be a problem for our implementation, for several reasons. First of all, we
only claim that terms are normalised correctly—this suffices for our procedure
to be admissible in a theorem prover. During that normalisation process, only
function that can be named by a (finite) term will occur as arguments to Clo.
Moreover, only needing partial correctness, we will only ever be concerned with
semantical values where our ↓-function terminates. But then, the fact that it did
terminate, witnesses that the semantical value has a finite representation by one
of our terms.

As mentioned, application is realised by an ML-function apply. With the
discussed semantics in mind, it is easy to construct such a function: in the cases
that C t1 . . . tk or x t1 . . . tk is applied to a value s, we just add it to the list. In
the case of a partially applied function applied to some value s we either, in case
more then one argument is still needed, collect this argument or, in case this was
the last argument needed, we apply the function to its arguments.

fun apply (Clo (1, f, xs)) x = f (x :: xs)
| apply (Clo (n, f, xs)) x = Clo (n - 1, f, x :: xs)
| apply (Const (name, args)) x = Const (name, x :: args)
| apply (Var (name, args)) x = Var (name, x :: args)

It should be noted that the first case in the above definition is the one that
triggers the actual work: compiled versions of the functions of the theory are
called. As discussed above, our semantical universe Univ allows only normal
values. Therefore, this call carries out all the normalization work.

As an example, consider a function append defined in some Isabelle/HOL
theory T based on the type list defined in theory List

fun append :: "’a list => ’a list => ’a list" where
"append Nil bs = bs" |
"append (Cons a as) bs = Cons a (append as bs)"
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and assume “append (append as bs) cs = append as (append bs cs)” was
proved. Compiling these equations together with associativity of append yields
the following ML code.

fun T_append [v_cs, Nbe.Const ("T.append", [v_bs, v_as])] =
T_append [T_append [v_cs, v_bs], v_as]

| T_append [v_bs, Nbe.Const ("List.Cons", [v_as, v_a])] =
Nbe.Const ("List.Cons", [T_append [v_bs, v_as], v_a])

| T_append [v_bs, Nbe.Const ("List.Nil", [])] =
v_bs

| T_append [v_a, v_b] =
Nbe.Const ("T.append", [v_a, v_b])

The second and third clause of the function definition are in one-to-one corre-
spondence with the definition of the function append in the theory. The argu-
ments, both on the left and right side, are in reverse order; this is in accordance
with our semantics that fa1 . . . an is implemented as “f [an,. . . , a1]”.

The last clause is a default clause fulfilling the need that the ML pattern
matching be exhaustive. But our equations, in general, do not cover all cases.
The constructor Var for variables is an example for a possible argument usually
not covered by any rewrite rule. In this situation where we have all arguments
for a function but no rewrite rule is applicable, no redex was generated by the
last application—and neither will be by applying this expression to further ar-
guments, as we have already exhausted the arity of the function. Therefore, we
can use the append function as a constructor. Using (the names of) our compiled
functions as additional constructors in our universal data type is a necessity of
normalising open terms. In the presence of variables not every term reduces to
one built up from only canonical constructors; instead, we might obtain normal
forms with functions like append. Using them as additional constructors is the
obvious way to represent these normal forms in our universal semantics.

Keeping this reproduction case in mind, we can understand the first clause.
If the first argument is of the form append, in which case it cannot further be
simplified, we can use associativity. Note that we are actually calling the append
function, instead of using a constructor; in this way we ensure to produce a
normal result.

Continuing the example, now assume that we want to normalise the expres-
sion “append [a,b] [c]”. Then the following compiled version of this expres-
sion would be evaluated to obtain an element of Univ.

(Nbe.apply
(Nbe.apply
(Clo (2,T_append,[]))
(Nbe.Const ("List.cons",

[(Nbe.Const ("List.cons",
[(Nbe.Const ("List.nil", [])),
(Nbe.free "b")])),

(Nbe.free "a")])))
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(Nbe.Const ("List.cons", [(Nbe.Const ("List.nil", [])),
(Nbe.free "c")])))

As discussed, values of type Univ represent normal terms. Therefore we can
easily implement the ↓-function, which will be called term in our implementation.
The function term returns a normal term representing a given element of Univ.
For values of the form “Const name [vn,. . . ,v1]” we take the constant C named
by the string, recursively apply term to v1, . . . , vn, obtaining t1, . . . , tn, and build
the application C t1 . . . tn. Here, again, we keep in mind that arguments are in
reverse order in the implementation. The definition in the case of a variable
is similar. In the case v = “Clo . . . ” of a closure we just carry out an eta
expansion: the value denotes a function that needs at least another argument,
so we can always write it as λx.term(v x), with x a fresh syntactical variable.
Naturally, this application of v to the fresh variable x is done via the function
apply discussed above. In particular, this application might trigger a redex and
therefore cause more computation to be carried out. For example, as normal
form of “append Nil” we obtain—without adding any further equations!—the
correct function “λu. u”.

Immediately from the definition we note that term can only output normal
terms. Indeed, the Const construct is used only for constructors or functions
where the arguments are of such a shape that no redex can occur. Expressions
of the shape x t1 . . . tk and λx.t are always normal if t, t1, . . . , tk are; the latter
we can assume by induction hypothesis. Note that we have shown the normality
of the output essentially by considering ways to combine terms that preserve the
normality. In fact, the normalisation property of normalisation by evaluation can
be shown entirely by considering an appropriate typing discipline [8].

Compared to the expressivity of the underlying term language in Isabelle, our
universal datatype is quite simple. This is due to the fact, that we consider an
untyped term-rewriting mechanism. This simplicity, however, comes at a price:
we have to translate back and forth between a typed and an untyped world.
Forgetting the types to get to the untyped rewrite structure is, essentially, an
easy task, even though some care has to be taken to ensure that the more
advanced Isabelle features like type classes and overloading are compiled away
correctly and the term to be normalised obeys the standard Hindley-Milner type
discipline. More details of this transformation into standard typing discipline are
described in §4.

From terms following this standard typing discipline the types are thrown
away and the untyped normal form is computed, using the mechanism described
earlier. Afterwards, the full type annotations are reconstructed. To this end, the
types of all free variables have been stored before normalization; the most general
types of the constants can be uniquely rediscovered from their names. The type
of the whole expression is kept as well, given that the Isabelle object language
enjoys subject reduction. Standard type inference will obtain the most general
type annotations for all sub-terms such that all these constraints are met.

In most cases, these type reconstructions are unique, as follows from the
structure of normal terms in the simply-typed lambda calculus. However, in
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the presence of polymorphic constants, the most general type could be more
general than intended. For example, let f be a polymorphic constant of type
“(’a => ’a) => bool”, say without any rewrite rule. Then the untyped nor-
mal form of “f (λu::bool. u)” would be “f (λu. u)” with most general type
annotations “f (λu::’a. u)”. To avoid such widening of types only those equa-
tions will be considered as being proved by normalization where the typing of
the result is completely determined, i.e., those equations, where the most general
type for the result does not introduce any new type variables. It should be noted
that this, in particular, is always the case, if an expression evaluates to True.

3 Model and Verification

This section models the previous section in Isabelle/HOL and proves partial
correctness of the ML level w.r.t. rewriting on the term level. In other words, we
will show that, if NBE returns an output t′ to an input t, then t = t′ could have
also be obtained by term rewriting with equations that are consequences of the
theory.

We do not attempt to handle questions of termination or uniqueness of nor-
mal forms. This would hardly be possible anyway, as arbitrary proven equations
may be added as rewrite rules. Given this modest goal of only showing sound-
ness, which however is enough to ensure conservativity of our extension of the
theorem prover, we over-approximate the operational semantics of ML. That
is, every reduction ML can make is also a possible reduction our model of ML
can make. Conversely, our ML model is non-deterministic w.r.t. both the choice
among the applicable clauses of a compiled function and the order in which to
evaluate functions and arguments—any evaluation strategy is fine, even non left-
linear equations are permitted in function definitions. This over-approximation
shows that partial correctness of our implementation is quite independent of
details of the implementation language. In particular, we could have chosen any
functional language, including lazy ones like Haskell.

In the introduction it was mentioned that Normalization by Evaluation is
best understood in terms of the mentioned properties “soundness of the seman-
tics” (i.e., the semantics identifies enough terms) and “reproduction” (i.e., nor-
mal terms can be read off from the semantics). For showing partial correctness,
however, the task is slightly different. First of all, we cannot really guarantee
that our semantics identifies enough terms; there might be equalities that hold in
the Isabelle theory under consideration that are not expressed as rewrite rules.
Fortunately, this is not a problem. A failure of this property can only lead to two
terms that are equal in the theory, but still have different normal forms. Then,
the lack of this properties requires us to show a slightly stronger form of the
reproduction property. We need to for arbitrary terms r that ↓ [[r]]↑ is, if defined,
a term that our theory equates with r. To show this property, we give a model of
our implementation language and assign each internal state a “denoted term”;
having this term denotation at hand we just have to show that each step our
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machine model makes either doesn’t change the denoted term, or transforms it
to a term of which our theory shows that it is equal.

3.1 Basic Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces some non-standard notation and a few basic data types with their primitive
operations.

The types of truth values and natural numbers are called bool and nat. The
space of total functions is denoted by ⇒. The notation t :: τ means that term t
has type τ .

Sets over type α, type α set, follow the usual mathematical convention.
Lists over type α, type α list, come with the empty list [], the infix constructor

·, the infix @ that appends two lists, and the standard functions map and rev.

3.2 Terms

We model bound variables by de Bruijn indices [6] and assume familiarity with
this device, and in particular the usual lifting and substitution operations. Below
we will not spell those out in detail but merely describe them informally—the
details are straightforward. Because variables are de Bruijn indices, i.e. natural
numbers, the types vname and ml-vname used below are merely abbreviations
for nat. Type cname on the other hand is an arbitrary type of constant names,for
example strings.

ML terms are modeled as a recursive datatype:

ml = CML cname
| VML ml-vname
| AML ml (ml list)
| LamML ml
| CU cname (ml list)
| V U vname (ml list)
| Clo ml (ml list) nat
| apply ml ml

The default type of variables u and v shall be ml.
The constructors come in three groups:

– The λ-calculus underlying ML is represented by CML, VML, AML and
LamML. Note that application AML applies an ML value to a list of ML
values to cover both ordinary application (via singleton lists) and to model
the fact that our compiled functions take lists as arguments. Constructor
LamML binds VML.

– Values of the datatype Univ (§2) are encoded by the constructors CU , V U

and Clo.
– Constructor apply represents the ML function apply (§2).
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Note that this does not model all of ML but just the fraction we need to express
computations on elements of type Univ, i.e. encoded terms.

Capture-avoiding substitution substML σ u, where σ :: nat ⇒ ml, replaces
VML i by σ i in u. Notation u[v/i ] is a special case of substML σ u where σ
replaces VML i by v and decreases all ML variables ≥ i by 1. Lifting the free ML
variables ≥ i is written liftML i v. Predicate closedML checks if an ML value
has no free ML variables (≥ a given de Bruijn index).

The term language of the logical level is an ordinary λ-calculus, again mod-
eled as a recursive datatype:

tm = C cname | V vname | tm · tm | Λ tm | term ml

The default type of variables r, s and t shall be tm.
This is the standard formalization of λ-terms (using de Bruijn), but aug-

mented with term. It models the function term from §2. The subset of terms not
containing term is called pure.

We abbreviate (· · ·(t · t1) · · · ·) · tn by t ·· [t1,. . .,tn]. We have the usual
lifting and substitution functions for term variables. Capture-avoiding substitu-
tion subst σ s, where σ :: nat ⇒ tm, replaces V i by σ i in s and is only defined
for pure terms. The special form s[t/i ] is defined in analogy with u[v/i ] above,
only for term variables. Lifting the free term variables ≥ i is written lift i and
applies both to terms (where V is lifted) and ML values (where V U is lifted).

In order to relate the encoding of terms in ML back to terms we define an
auxiliary function kernel :: ml ⇒ tm that maps closed ML terms to λ-terms.
For succinctness kernel is written as a postfix !; map kernel vs is abbreviated to
vs!. Note that postfix binds tighter than prefix, i.e. f v ! is f (v !).

(CML nm)! = C nm
(AML v vs)! = v ! ·· (rev vs)!
(LamML v)! = Λ ((lift 0 v)[V U 0 []/0 ])!
(CU nm vs)! = C nm ·· (rev vs)!
(V U x vs)! = V x ·· (rev vs)!
(Clo f vs n)! = f ! ·· (rev vs)!
(apply v w)! = v ! · w !

The arguments lists vs need to be reversed because, as explained in §2, the
representation of terms on the ML level reverses argument lists to allow apply
to add arguments to the front of the list.

The kernel of a tm, also written t !, replaces all subterms term v of t by v !.
Note that ! is not structurally recursive in the LamML case. Hence it is

not obvious to Isabelle that ! is total, in contrast to all of our other functions.
To allow its definition [13] we have shown that the (suitably defined) size of the
argument decreases in each recursive call of !. In the LamML case this is justified
by proving that both lifting and substitution of V U i [] for VML i do not change
the size of an ML term.
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3.3 Reduction

We introduce two reduction relations: → on pure terms, the usual λ-calculus re-
ductions, and ⇒ on ML terms, which models evaluation in functional languages.

The reduction relation → on pure terms is defined by β-reduction: Λ t · s
→ t [s/0 ], η-expansion: t → Λ (lift 0 t · V 0 ), rewriting:

(nm, ts, t) ∈ R
C nm ·· map (subst σ) ts → subst σ t

and context rules:

t → t ′

Λ t → Λ t ′
s → s ′

s · t → s ′ · t
t → t ′

s · t → s · t ′

Note that R :: (cname × tm list × tm) set is a global constant that mod-
els a (fixed) set of rewrite rules. The triple (f , ts, t) models the rewrite rule
C f ·· ts → t .

Just like → depends on R, ⇒ depends on a compiled version of the rules,
called compR :: (cname × ml list × ml) set. A triple (f , vs, v) represents the
ML equation with left-hand side AML (CML f ) vs and right-hand side v. The
definition of compR in terms of our compiler is given further below.

The ML reduction rules come in three groups. First we have β-reduction
AML (LamML u) [v ] ⇒ u[v/0 ] and invocation of a compiled function:

(nm, vs, v) ∈ compR ∀ i . closedML 0 (σ i)
AML (CML nm) (map (substML σ) vs) ⇒ substML σ v

This is simply one reduction step on the level of ML terms.
Then we have the reduction rules for function apply :

0 < n
apply (Clo f vs (Suc n)) v ⇒ Clo f (v ·vs) n

apply (Clo f vs (Suc 0 )) v ⇒ AML f (v ·vs)
apply (CU nm vs) v ⇒ CU nm (v ·vs)
apply (V U x vs) v ⇒ V U x (v ·vs)

which directly realize the defining equations for apply in §2.
Finally we have all the context rules (not shown). They say that reduction

can occur anywhere, except under a LamML. Note that we do not fix lazy or
eager evaluation but allow any strategy. Thus we cover different target languages.
The price we pay is that we can only show partial correctness.

Because λ-calculus terms may contain term, they too reduce via ⇒. These
reduction rules realize the description of term in §2:

term (CU nm vs) ⇒ C nm ·· map term (rev vs)
term (V U x vs) ⇒ V x ·· map term (rev vs)
term (Clo vf vs n) ⇒ Λ (term (apply (lift 0 (Clo vf vs n)) (V U 0 [])))
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The last clause formalizes η-expansion. By lifting, 0 becomes a fresh variable
which the closure object is applied to and which is bound by the new Λ.

In addition we can reduce anywhere in a tm:

t ⇒ t ′

Λ t ⇒ Λ t ′
s ⇒ s ′

s · t ⇒ s ′ · t
t ⇒ t ′

s · t ⇒ s · t ′
v ⇒ v ′

term v ⇒ term v ′

3.4 Compilation

This section describes our compiler that takes a λ-calculus term and produces
an ML term. Its type is tm ⇒ (nat ⇒ ml) ⇒ ml and it is defined for pure terms
only:

compile (V x ) σ = σ x
compile (C nm) σ = Clo (CML nm) [] (arity nm)
compile (s · t) σ = apply (compile s σ) (compile t σ)
compile (Λ t) σ = Clo (LamML (compile t (VML 0 ## σ))) [] 1

We explain the equations one by one.

1. In the variable case we look the result up in the additional argument σ. This
is necessary to distinguish two situations. On the one hand the compiler is
called to compile terms to be reduced. Free variables in those terms must
be translated to V U variables, their embedding in type Univ. Function term
reverses this translation at the end of ML execution. On the other hand the
compiler is also called to compile rewrite rules (R) to ML (compR). In this
case free variables must be translated to ML variables which are instantiated
by pattern matching when that ML code is executed.

2. A constant becomes a closure with an empty argument list. The counter
of missing arguments is set to arity nm, where arity is a global table map-
ping each constant to the number of arguments it expects. Note that our
implementation takes care to create only closures with a non-zero counter—
otherwise apply never fires. This does not show up in our verification because
we only show partial correctness: even though the output would not be nor-
mal, it still would be a reduct of the input.

3. Term application becomes apply.
4. Term abstraction becomes a closure containing the translated ML function

waiting for a single argument. The construction V ML 0 ## σ is a new
substitution that maps 0 to V ML 0 and i+1 to liftML 0 (σ i). This is the
de Bruijn way of moving under an abstraction.

Note that our actual compiler avoids building intermediate closures that are
directly applied to an argument.

As explained above, the compiler serves two purposes: compiling terms to be
executed (where the free variables are fixed) and compiling rules (where the free
variables are considered open). These two instances are given separate names:

comp-open t = compile t VML comp-fixed t = compile t (λi . V U i [])
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We can now define the set of compiled rewrite rules compR as the union of the
compilation of R and the default rules (§2) for each defined function symbol

compR =
(λ(nm, ts, t). (nm, map comp-open (rev ts), comp-open t)) ‘ R ∪
(λ(nm, ts, t). let vs = map VML [0 ..<arity nm] in (nm, vs, CU nm vs)) ‘ R

where f ‘ M is the image of a set under a function and [m..<n] is the list
[m,. . .,n−1 ]. Since compilation moves from the term to the ML level, we need
to reverse argument lists. On the left-hand sides of each compiled rule this is
done explictly, on the right-hand side it happens implicitly by the interaction of
apply with closures. For the default rewrite rules no reversal is necessary.

We can model the compiled rewrite rule as a set (rather than a list) because
the original rewrite rules are already a set and impose no order. For partial
correctness it is irrelevant in which order the clauses are tried. If the default
rule is chosen, no reduction occurs, which is correct, too. Of course the actual
implementation puts the default clause last. The implementation also ensures
that in all clauses fp1 . . . pn = t for some function f , n is the same: additional
parameters can always be added by extensionality.

3.5 Verification

The main theorem is partial correctness of compiled evaluation at the ML level
w.r.t. term reduction:

Theorem 1. If pure t, pure t ′ and term (comp-fixed t) ⇒∗ t ′ then t →∗ t ′.

Let us examine the key steps in the proof. The two inductive lemmas

Lemma 2. If pure t and ∀ i . σ i = V U i [] then (compile t σ)! = t .

Lemma 3. If pure t and ∀ i . closedML n (σ i) then closedML n (compile t σ).

yield (term (comp-fixed t))! = t and closedML 0 (term (comp-fixed t)). Then

Theorem 4. If t ⇒∗ t ′ and closedML 0 t then t ! →∗ t ′! ∧ closedML 0 t ′.

yields the desired result t →∗ t ′ (because pure t ′ =⇒ t ′! = t ′). Theorem 4 is
proved by induction on ⇒∗ followed by induction on ⇒. The inner induction, in
the term case, requires the same theorem, but now on the ML level:

Theorem 5. If v ⇒ v ′ and closedML 0 v then v ! →∗ v ′! ∧ closedML 0 v ′.

This is proved by induction on the reduction ⇒ on ML terms. There are two
nontrivial cases: β-reduction and application of a compiled rewrite rule. The
former requires a delicate and involved lemma about the interaction of the kernel
and substitution which is proved by induction on u (and whose proof requires
an auxiliary notion of substitution):

Theorem 6. If closedML 0 v and closedML (Suc 0 ) u then (u[v/0 ])! =
((lift 0 u)[V U 0 []/0 ])![v !/0 ].
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The application of a compiled rewrite rule is justified by

Theorem 7. If (nm, vs, v) ∈ compR and ∀ i . closedML 0 (σ i) then
C nm ·· (map (substML σ) (rev vs))! →∗ (substML σ v)!.

That is, taking the kernel of a compiled and instantiated rewrite rule yields a
rewrite on the λ-term level. The conclusion is expressed with →∗ rather than →
because the rule in compR may also be a default rule, in which case both sides
become identical.

The proof of Theorem 7 requires one nontrivial inductive lemma:

Lemma 8. If pure t and ∀ i . closedML 0 (σ i) then (substML σ (comp-open t))!
= subst (kernel ◦ σ) t.

In the proof of Theorem 7 this lemma is applied to vs and v, which are the
output of comp-open by definition of compR. Hence we need that all rules in R
are pure:

(nm, ts, t) ∈ R =⇒ (∀ t∈set ts. pure t) ∧ pure t

This is an axiom because R is otherwise arbitrary. It is trivially satisfied by our
implementation because the inclusion of term as a constructor of λ-terms is an
artefact of our model.

4 Realization in Isabelle

The implementation of our NBE approach in Isabelle/HOL is based on a generic
code generator framework [12]. The following diagram and description explains
how this is connected to the rest of Isabelle:

extralogical part

T1

t1
preprocessor

t4

t3 = t4

T2

t2

t1 = t2

postprocessor

translation

t3

P

it

evaluation

& reconstruction

compilation

funs

e

1. The input is an Isabelle term t1 to be normalized w.r.t. a set of equational
theorems T 1 (and β-reduction). Until evaluation both t1 and T 1 are pro-
cessed in parallel.

2. The framework allows one to configure arbitrary logical transformations on
input t1 (and T 1) and output t3 (pre- and postprocessing). This is for the
user’s convenience and strictly on the level of theorems: both transformations
yield equational theorems t1 = t2 and t3 = t4; together with the equation
t2 = t3 stemming from the actual evaluation (this is where we have to trust
the evaluator!), the desired t1 = t4 is obtained by transitivity and returned
to the user.
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3. The main task of the framework is to transform a set of equational theorems
T 2 into a program P (and t2 into it) in an abstract intermediate language
capturing the essence of languages like SML or Haskell with an equational
semantics. The intermediate term language is practically the same as the
Isabelle term language, and the equational semantics is preserved in the
translation. The key changes are the replacement of an unordered set of
equational theorems by a structured presentation with explicit dependen-
cies, and, most importantly, the removal of overloading and the dictionary
translation of type classes. For details see [12]. Inputs to NBE are in this
intermediate language. Having compiled away type classes and overloading,
NBE operates on terms following the Hindley-Milner type discipline, as as-
sumed in §2.

4. P is compiled (via comp-open, see §3.4) to a series of SML function definitions
funs and it (via comp-fixed) to an SML term e. Then term (let funs in
e end) is given to the SML compiler, causing the evaluation of e and the
translation of the result back into an Isabelle term; type reconstruction (see
§2) on the result yields t3.

We conducted a number of timing measurements to determine the relative perfor-
mance of NBE w.r.t. two other normalization mechanisms available in Isabelle:

simp, the symbolic simplifier which operates on the level of Isabelle terms and
theorems and produces a theorem purely by inference.

eval , the ground evaluator which compiles terms and theorems directly to SML,
without support for open terms. It uses the same code generator framework
but defines a native SML datatype for each Isabelle datatype, rather than
operating on a universal datatype. For details see [12].

Our setup for this experiment ensures that all three evaluators use the same
equational theorems and the same reduction strategy.

We measured the performance of three different programs: eras computes
the first 100 prime numbers using the Sieve of Eratosthenes in a symbolic and
naive implementation; graph computes the strongly connected components of a
graph represented as a finite set of pairs; sort sorts a list of strings by insertion
sort:4

eras graph sort

simp 4304 1384% 222717 11404% 1451169 22488%
nbes 339 109% 3312 170% 11174 173%
nbe 311 100% 1953 100% 6453 100%
eval 48 15% 292 15% 393 6%

Unsurprisingly, nbe turns out to be faster than simp and slower than eval. How-
ever the relative differences increase from left to right. In this order also the
use of pattern matching in the examples increases. This shows the superiority
4 Absolute figures are in milliseconds using Isabelle 2007 with PolyML 5.1 on a Linux

2.6 AMD 1 GHz machine
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of native pattern matching as exploited by eval over the pattern matching via
strings in some universal datatype as required by nbe, which is in turn superior
to pattern matching programmed in SML as in simp. This relevance of pattern
matching motivated us to use integers (not strings) to identify constant names in
patterns. Indeed, if we use an implementation using strings for constant names
(nbes), there is a considerable loss of efficency.

There is a trade-off between performance and expressiveness. While eval is
fast, it can evaluate only closed terms. Furthermore, if the result of eval is
to be “read back” as an Isabelle term, it must only contain constructors and
no function values. Finally, eval cannot cope with additional rewrite rules like
associativity. With a comparably small performance penalty nbe can lift all these
restrictions, while still outperforming the simplifier by 1–2 orders of magnitude.

5 Related Work

The work probably most closely related to ours is that of Berger, Eberl, and
Schwichtenberg [3,4] who also integrated NBE into a proof assistant. However,
their approach is based on a type-indexed semantics with constructors coinciding
with those of the object language. Besides the administrative hassle, the com-
mitment to a particular type system in the object language, and unneeded and
unwanted η-expansions, the main disadvantage of this choice is that functions,
like the append function in our example in §2, cannot serve the role as addi-
tional constructors. Note that in our example, this usage of an append construc-
tor made it possible to effortlessly incorporate associativity into the definition
of T_append, with pattern matching directly inherited from the implementation
language.

The unavailability of the shape of a semantical object, unless it is built from
a canonical constructor of some ground type, made it necessary in the approach
by Berger et al. to revert to the term representation. This led to the artificial (at
least from a user’s point of view) and somewhat obscure distinction between so-
called “computational rules” and “proper rewrite rules” where only the former
are handled by NBE. The latter are carried out at a symbolic level (using pattern
matching on the term representation). This mixture of computations on the
term representation and in the implementation language requires a continuous
changing between both representations. In fact, one full evaluation and reification
is performed for each single usage of a rewrite rule.

Following Aehlig and Joachimski [1], our proof shows again that correctness
of NBE is completely independent of any type system. In particular, no new
version of NBE has to be invented each and every time it is applied to some
term system with a different typing discipline. There simply is no need for logical
relations in the proof.

Two other theorem proving systems provide specialized efficient normalisers
for open λ-terms. Both of them are based on abstract machines and are therefore
complementary to our compiled approach:
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– Barras [2] extends the HOL [10] system with an abstract reduction machine
for efficient rewriting. It is as general as our approach and even goes through
the inference kernel. For efficiency reasons HOL’s term language was ex-
tended with explicit substitutions.

– Grégoire and Leroy [11] present and verify a modification of the abstract
machine underling OCaml. This modified abstract machine has become part
of Coq’s trusted proof kernel. The main difference is that they cannot deal
with additional rewrite rules like associativity.

Compiled approaches to rewriting of first-order terms can also be found in other
theorem provers, e.g. KIV [17].

6 Future Work

A small extension of the formalization is the straightforward proof normality of
the output (see §2). More interesting are extensions of the class of permitted
rewrite rules:

– Currently the implementation inherits ML’s restriction to left-linear rules.
It can be lifted to allow repeated variables on the left-hand side roughly
as follows: make all variables distinct on the left-hand side but check for
equality on the right-hand side. The details are more involved.

– More adventurous generalizations include ordered rewriting (where a rewrite
rule only fires if certain ordering constraints are met) and conditional rewrit-
ing. The former should be easy to add, the latter would require a nontrivial
generalization of the underlying code generator framework.

It would also be interesting to model λ-terms by different means than de
Bruijn indices. Particularly prominent is the nominal approach [16] and its real-
isation by Urban [18] in Isabelle. As about one third of our proofs are primarily
concerned with de Bruijn indices, it would be an interesting comparison to redo
the verification in the nominal setup. Our preference for de Bruijn terms is due
to the fact that the current implementation of nominal data types in Isabelle
does not support nested data types, where recursion is through some other data
type like list, which occurs in our model of ML terms.
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