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Abstract
We have formalized a range of proof systems for classical propositional logic (sequent calculus,
natural deduction, Hilbert systems, resolution) in Isabelle/HOL and have proved the most impor-
tant meta-theoretic results about semantics and proofs: compactness, soundness, completeness,
translations between proof systems, cut-elimination, interpolation and model existence.
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1 Introduction

This paper presents a unified formalization in Isabelle/HOL [29] of the classical proof
systems for classical propositional logic (sequent calculus, natural deduction, Hilbert systems,
resolution) and their meta-theory: compactness, soundness, completeness, translations
between proof systems, cut-elimination, interpolation and model existence. The motivation
is the desire to develop (in the long run) a counterpart to the emerging Encyclopaedia of
Proof Systems [51], including all formalized meta-theory. Our work is also part of IsaFoL [3],
a collection of formalizations of logics in Isabelle. A second motivation comes from teaching
logic. Most textbooks cover only specific proof systems and specific results proved in a
specific manner, and it is hard to modify the setup. That is why we cover multiple proof
systems with their interconnections. In particular we give multiple proofs of some key results,
e.g. three different completeness proofs. The longer term goal is a formalized logic textbook
in the style of Concrete Semantics [28] but with a web of proof systems and multiple proofs
of key results such that one can select one’s own subset of the material. It is also possible to
obtain verified executable code from such formalizations, e.g. our toy sequent calculus and
resolution provers and our Craig interpolator.

Our paper differs from each of the related papers below in at least one of the following
aspects: we do not reason about deductive systems alone but also about semantics; we do
not consider a specific calculus but a collection of canonical calculi; we do not prove a specific
result but most if not all the results covered in the propositional section of an introductory
logic course. That is, we provide a unique, unified library of definitions and proofs. The
formalization of the translations between all the proof systems appears to be new.

The complete development is available online [26]. It consists of 5000 lines of Isabelle
text that translate into more than 100 A4 pages of definitions and proofs. For readability
the notation in this paper differs in places from the Isabelle text.
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6:2 Formalized Proof Systems for Propositional Logic

1.1 Related Work
Formalization of logic was probably started by Shankar’s proof of Gödel’s first incompleteness
theorem [42]. Harrison formalized basic first-order model theory [16]. There are many other
formalizations of results about propositional and first-order logics (e.g. cut elimination [33, 49],
interpolation [9], completeness [36, 8, 39, 21, 6], incompleteness [31], resolution [37, 38],
quantifier elimination [27]) and temporal logic (e.g. [11]). Berghofer [1] formalized part of
[13] but this was never published. There is also significant work on formalized SAT solvers
[50, 25, 43, 24, 30, 5]. Harrison [17] started to verify a theorem prover in itself, which
was later extended [23]. The above publications rely on general purpose theorem provers.
Alternatively, a number of metalogical frameworks for reasoning about deductive systems
have been implemented (e.g. [32, 34, 14, 35]) and proof theoretic results were proved in
them, e.g. cut elimination in intuitonistic and classical logic [33], cut admissibility for a
number of propositional linear logics [10], and translations between various calculi for minimal
propositional logic of implication (in the Abella [14] library).

2 Isabelle Notation

The logic of Isabelle/HOL conforms largely to everyday mathematical notation. This section
summarizes non-standard notation.

The type of truth values is called bool. The function space is denoted by ⇒. Type
variables are denoted by ′a, ′b, etc. The notation t :: τ means that term t has type τ . Type
constructors follow postfix syntax, e.g. ′a set is the type of sets of elements of type ′a. Lists
over type ′a, type ′a list, come with the empty list [ ] and the infix constructor “·”, the infix
append operator @. Function set converts a list into a set.

Type ′a multiset is the type of finite multisets over type ′a. The empty multiset is ∅#,
comprehension is written {...}#, multiset union is denoted by +, insertion by a comma,
difference by − and membership by ∈#.

Horizontal lines in rules are displayed versions of the implication −→.
Many of our theorems are proved by induction on the structure of formulas or derivations.

If we do not say anything about how the induction cases are dealt with, this means that Isabelle
can come up with proofs for them automatically (often with the help of Sledgehammer [2]).

3 Formulas and Their Semantics

A formula (which is simply a term of a recursive data type) is either an atom A0,A1, . . .1,
or ⊥, or constructed from other formulas using the connectives ¬, ∧, ∨ and →; note the
bold font to distinguish them from ¬, ∧, ∨ and −→ in the metalogic. The variables F, G
and H always stand for formulas. The function atoms returns the set of all atom indices in a
formula (or similar object).

The semantics of a formula F is defined via a valuation or assignment A :: nat ⇒ bool (a
function from atom indices to truth values) and a recursively defined operator A |= F. The
|= operator canonically maps the constructors of the formulas to their equivalent boolean
operators in the metalogic, e.g.

(A |= F → G) = (A |= F −→ A |= G).

1 We use natural numbers to index atoms, but any countably infinite set would suffice.
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Ak, Γ ⇒ Ak, ∆
Ax

⊥, Γ ⇒ ∆
BotL

Γ ⇒ F , ∆
¬ F , Γ ⇒ ∆

NotL
F , Γ ⇒ ∆

Γ ⇒ ¬ F , ∆
NotR

F , G, Γ ⇒ ∆
F ∧ G, Γ ⇒ ∆

AndL
Γ ⇒ F , ∆ Γ ⇒ G, ∆

Γ ⇒ F ∧ G, ∆
AndR

F , Γ ⇒ ∆ G, Γ ⇒ ∆
F ∨ G, Γ ⇒ ∆

OrL
Γ ⇒ F , G, ∆

Γ ⇒ F ∨ G, ∆
OrR

Γ ⇒ F , ∆ G, Γ ⇒ ∆
F → G, Γ ⇒ ∆

ImpL
F , Γ ⇒ G, ∆

Γ ⇒ F → G, ∆
ImpR

Figure 1 Rules of sequent calculus

Atoms are evaluated by looking up their index in A: A |= Ak = A k. Assignments are total
functions and thus suitable for any formula.

4 Proof Systems

4.1 Sequent Calculus
We formalize a Sequent Calculus (SC) inspired by Troelstra and Schwichtenberg [48]. But
whereas they define derivation trees inductively, we merely define derivable sequents, where
sequents are pairs of multisets. That is, we formalize an inductively defined predicate Γ ⇒ ∆
where Γ and ∆ are multisets. Hence Γ ⇒ ∆ means that the sequent is derivable. We begin
with the system that [48] refers to as G3c: its rules, adjusted for our definition of formulas,
are shown in Figure 1.

In the literature one finds three types of sequents: lists, multisets and sets. After some
experiments with all three representations we found that multisets were most convenient,
although we did not conduct an in-depth study. However, we did formalize Gentzen’s original
system (approximately G2c in [48]) based on lists (with all the structural rules) and proved
the equivalence with the multiset-based system SC from Figure 1. From now on we consider
the latter system only.

Many of the proofs in [48] are by induction over the depth of a derivation tree. In order to
be able to follow this style we defined a second, ternary predicate written Γ ⇒n ∆, where n
is the depth of the derivation, and proved (∃ n. Γ ⇒n ∆) ←→ Γ ⇒ ∆. A canonical definition
of depth would have Ax and BotL start with 0 (or 1) and use the maximum in rules with
two premises. Instead, we require both antecedents to have the same “depth”, e.g.:

Γ ⇒n F , ∆ G, Γ ⇒n ∆
F → G, Γ ⇒n + 1 ∆

F , Γ ⇒n G, ∆
Γ ⇒n + 1 F → G, ∆ Ak, Γ ⇒n + 1 Ak, ∆

We found this modification to be more suitable for Isabelle’s automated reasoning tools.
While this allows the proofs in the next section to follow [48], we additinally found proofs

that do not require depth arguments. We present only those.

4.1.1 Cut Admissibility
We prove weakening, inversion, contraction and cut as admissible rules in the meta-logic.
The proofs of the eight inversion rules can be partly automated, but they are still quite long.
One major issue is exchange: given a sequent of the form F , G → H , Γ ⇒ ∆, we need to
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6:4 Formalized Proof Systems for Propositional Logic

exchange F and G → H before we can apply ImpL. The problem is that Isabelle’s unification
algorithm does not know about multiset laws. Although we do not need to apply an explicit
exchange rule of SC, the proof still needs to apply the multiset equation F , G, Γ = G, F ,
Γ. Luckily, ordered rewriting (which Isabelle’s simplifier supports) with this equation sorts
sequents into a canonical order, thus automating the application of this equation in many
cases. Another reason for our proofs to be long is that we formalized derivable sequents.
When a proof in the literature makes a case distinction on whether a formula is principal, we
can only reproduce that by making a case distinction on which rule was applied last. That
requires discharging ten instead of two cases.

The proof of the admissibility of the cut rule is by induction on the cut formula as in [48].
The induction steps are entirely taken care of automatically. For the base cases, we need two
auxiliary lemmas:

Γ ⇒ ∆
Γ ⇒ ∆ − {⊥}#

Ak, Γ ⇒ ∆ Γ ⇒ Ak, ∆
Γ ⇒ ∆

They are proved by induction on the derivations of Γ ⇒ ∆ and Ak, Γ ⇒ ∆. While the
second lemma is just the cut rule for atoms, it is easier to show than the cut rule itself since
we know that the cut formula cannot be principal in the induction steps of its proof.

The proof of the two contraction rules proceeds in exactly the same manner, unlike the
proof by induction on the derivation tree depth in [48]. The proof by induction on the depth
does not require the two auxiliary lemmas in the base cases but is slightly more unwieldy in
Isabelle/HOL.

4.1.2 Soundness and Completeness
We define the semantics of a sequent as follows:

A |= Γ ⇒ ∆ def= (∀F∈#Γ. A |= F) −→ (∃F∈#∆. A |= F).

Note that _ |= _ ⇒ _ is a ternary operator. Validity is defined as usual:

|= Γ ⇒ ∆ def= ∀A. A |= Γ ⇒ ∆

Soundness (Γ ⇒ ∆ −→ |= Γ ⇒ ∆) is proved by induction on Γ ⇒ ∆. The proof of com-
pleteness

|= Γ ⇒ ∆ −→ Γ ⇒ ∆ (1)

is more involved and conceptually similar to Gallier’s [15, §3.4.6]. Gallier presents a search
procedure that constructs derivation trees. Once the procedure terminates (for propositional
logic, it always does), the set of open leaves in the derivation tree corresponds to the set of
counterexamples. Our proof search procedure sc dispenses with derivation trees and works
on lists of formulas and atoms. Replacing multisets with lists is necessary to formulate sc as
a simple structurally recursive function. In a call sc Γ A ∆ B, the parameters Γ and ∆ are
lists of formulas and (ignoring A and B) we are trying to prove mset Γ ⇒ mset ∆, where
mset converts a list into a multiset. In each step, the first formula in Γ or ∆ is decomposed
according to a rule of SC. Atoms (more precisely, their indices) are moved into A and B. If
Γ = ∆ = [ ] and set A ∩ set B = ∅, then a counterexample has been found. The defining
equations for sc are shown in Figure 2.

From a pair (A, B) returned by sc, a countermodel can be constructed: map all elements
of A to True and all elements of B to False. The following propositions are not hard to prove:
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sc [ ] A [ ] B = if set A ∩ set B = ∅ then {(A, B)} else ∅
sc (Ak · Γ) A ∆ B = sc Γ (k · A) ∆ B
sc Γ A (Ak · ∆) B = sc Γ A ∆ (k · B)
sc (⊥ · Γ) A ∆ B = ∅
sc Γ A (⊥ · ∆) B = sc Γ A ∆ B
sc (¬ F · Γ) A ∆ B = sc Γ A (F · ∆) B
sc Γ A (¬ F · ∆) B = sc (F · Γ) A ∆ B
sc (F ∧ G · Γ) A ∆ B = sc (F · G · Γ) A ∆ B
sc Γ A (F ∧ G · ∆) B = sc Γ A (F · ∆) B ∪ sc Γ A (G · ∆) B
sc (F ∨ G · Γ) A ∆ B = sc (F · Γ) A ∆ B ∪ sc (G · Γ) A ∆ B
sc Γ A (F ∨ G · ∆) B = sc Γ A (F · G · ∆) B
sc (F → G · Γ) A ∆ B = sc Γ A (F · ∆) B ∪ sc (G · Γ) A ∆ B
sc Γ A (F → G · ∆) B = sc (F · Γ) A (G · ∆) B

Figure 2 Search procedure sc

The search procedure always terminates in at most n steps, where n = 2 ∗
∑

(map size
(Γ @ ∆)) + length (Γ @ ∆) and the size of a formula is the number of connectives in it.
For the same n we proved:
sc Γ [ ] ∆ [ ] = ∅ −→ mset Γ ⇒n mset ∆
(A, B) ∈ sc Γ [ ] ∆ [ ] −→ λk. k ∈ set A 6|= mset Γ ⇒ mset ∆

Generalizations of the latter two facts (with variables for the empty lists) follow by induction
on the computation of sc. The completeness of SC follows easily. Note that in the final
proposition the countermodel is based only on A because disjointness of A and B implies
that λk. k ∈ set A maps elements in B to False.

4.2 Natural Deduction
We have chosen a presentation of Natural Deduction (ND) with explicit contexts.2 A context
Γ is a set of formulas. The set of ND rules is shown in Figure 3. Explicit contexts require
rule Ax to get started. Streamlined proofs with explicit contexts require a weakening rule
which is proved by induction on Γ `N F :

Γ `N F Γ ⊆ Γ ′

Γ ′ `N F

4.2.1 Soundness and Completeness
The semantic meaning of Γ `N F is best described by entailment3:

Γ ||= F def= ∀A. (∀G∈Γ. A |= G) −→ A |= F.

Soundness, Γ `N F −→ Γ ||= F, is shown by induction on Γ `N F.
For showing completeness, we follow an approach presented, for example, by Huth and

Ryan [20]: show that ND can “simulate truth tables”. The translation from assignments to
formulas is captured by the notation FA defined by

2 This is indispensable for a positive inductive definition: without contexts, ImpI becomes (`N F −→ `N

G) −→ `N F → G where the inductive predicate occurs in a negative position (`N F).
3 We chose a separate symbol ||= for entailment because further overloading of |= necessitates type

annotations for disambiguation in too many places.
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6:6 Formalized Proof Systems for Propositional Logic

F ∈ Γ
Γ `N F

Ax
{¬ F} ∪ Γ `N ⊥

Γ `N F
CC

Γ `N ¬ F Γ `N F
Γ `N ⊥

NotE
{F} ∪ Γ `N ⊥

Γ `N ¬ F
NotI

Γ `N F ∧ G
Γ `N F

AndE1
Γ `N F ∧ G

Γ `N G
AndE2

Γ `N F Γ `N G
Γ `N F ∧ G

AndI

Γ `N F
Γ `N F ∨ G

OrI1
Γ `N G

Γ `N F ∨ G
OrI2

Γ `N F ∨ G {F} ∪ Γ `N H {G} ∪ Γ `N H
Γ `N H

OrE

{F} ∪ Γ `N G
Γ `N F → G

ImpI
Γ `N F → G Γ `N F

Γ `N G
ImpE

Figure 3 Rules of natural deduction

1. F → G → F
2. (F → G → H ) → (F → G) → F → H
5. (F ∧ G) → F
6. (F ∧ G) → G
7. F → G → F ∧ G
8. F → F ∨ G
9. G → F ∨ G
10. (F → H ) → (G → H ) → (F ∨ G) → H
11. (F → ⊥) → ¬ F
12. ¬ F → F → ⊥
13. (¬ F → ⊥) → F

F ∈ Γ
Γ `H F

Ax

Γ `H F Γ `H F → G
Γ `H G

MP

Figure 4 Axioms and rules of Hilbert systems

FA def= if A |= F then F else ¬ F

First we show two lemmas:

atoms F ⊆ Z −→ {Ak
A | k ∈ Z} `N FA

(∀A. {Ak
A | k ∈ {l} ∪ Z} `N F) −→ (∀A. {Ak

A | k ∈ Z} `N F)

The first one is proved by induction on F, the second one requires a few lines of careful
manual reasoning involving the derived rule

{F} ∪ Γ `N H {¬ F} ∪ Γ `N H
Γ `N H

A limited completeness theorem |= F −→ ∅ `N F follows by downward induction on the
size of atoms F (removing atom by atom). The general completeness theorem requires
compactness and is postponed to Section 6.

4.3 Hilbert Systems
We consider Hilbert systems (HS) based on the axioms and rules shown in Figure 4. Axioms
5 to 10 correspond to those originally postulated by Hilbert [19]. Axioms 1 and 2 are merely
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a more compact way of expressing Hilbert’s first four axioms. The axioms from 11 onward
needed to be adjusted since Hilbert does not use formulas with ⊥.

The deduction theorem is proved in the standard inductive fashion:

{F} ∪ Axs0 ∪ Γ `H G
Axs0 ∪ Γ `H F → G

Here Axs0 denotes the set of axioms 1 and 2 only. In Section 5 we relate HS to ND and
SC, thus obtaining a syntactic proof of soundness and completeness. A semantic proof of
completeness is given in Section 9.

5 Translating Between Proof Systems

This section presents results relating derivations in SC, ND and HS. The key results are:

Γ `N F −→ Axs1 ∪ Γ `H F (2)
Axs1 ∪ {F | F ∈# Γ} `H G −→ Γ ⇒ {G}# (3)
Γ ⇒ ∆ −→ {F | F ∈# Γ} ∪ {¬ F | F ∈# ∆} `N ⊥ (4)

where Axs1 is the full set of axioms from Figure 4. All of these proofs are by induction on
the rules of the system in the premise, simulating each rule in the system of the conclusion.

For the proof of (2) the deduction theorem is required wherever ND modifies its context Γ.
The only case that needs some manual attention is that of simulating OrE, simply because
of its slightly higher complexity.

For (3), we need to show that all Axs1 axioms are derivable in SC, which can be done
by blindly applying matching SC rules. To simulate MP, admissibility of the cut rule is
necessary.

For (4), we need a set of rules that execute the reasoning of SC in the context Γ of ND,
prefixing a ¬ to formulas that would appear in ∆, for example:

{¬ F , ¬ G} ∪ Γ `N ⊥
{¬ (G ∨ F)} ∪ Γ `N ⊥

{¬ F} ∪ Γ `N ⊥ {G} ∪ Γ `N ⊥
{F → G} ∪ Γ `N ⊥

The proofs of these rules are constructed automatically.
Overall we obtain that the following three propositions are equivalent:

Axs1 `H F ∅ `N F ∅# ⇒ {F}#.

6 Compactness

The compactness theorem states that satisfiability and finite satisfiability of a set of formulas
coincide:

sat S def= ∃A. ∀F∈S . A |= F
fin_sat S def= ∀ s⊆S . finite s −→ sat s

We follow Enderton’s proof [12] which is based on an enumeration of all formulas. There is
an Isabelle library theory that can automatically derive countability of the type of formulas
and define a surjective function from a natural number n to a formula Fn. This enables us
to define the saturation of a set of formulas:

TYPES 2017



6:8 Formalized Proof Systems for Propositional Logic

C ∈ S
S `R C

S `R C S `R D Pk ∈ C N k ∈ D
S ` (C − {k+}) ∪ (D − {k−})

Figure 5 Rules of Resolution

saturate S 0 = S
saturate S (n + 1) =
(let S ′ = saturate S n; S t = {Fn} ∪ S ′; Sf = {¬ Fn} ∪ S ′
in if fin_sat Sf then Sf else S t)

Saturate S def=
⋃

n saturate S n

Compactness follows after proving the following lemmas:

S ⊆ Saturate S
fin_sat S −→ F ∈ Saturate S ←→ ¬ F /∈ Saturate S
fin_sat S −→ fin_sat (Saturate S)
fin_sat S −→ (λk. Ak ∈ Saturate S) |= F ←→ F ∈ Saturate S

The proofs are standard.
As an example application of compactness, we show a general completeness theorem

for ND: Γ ||= F −→ Γ `N F. We have proved this both via the completeness result from
Section 4.2, compactness and weakening, and via compactness, the SC completeness result
from Section 4.1 and (4) from Section 5.

7 Resolution

We have dedicated a separate section to resolution since it is quite different from the other
proof systems. To begin with, it uses a different type of formulas: CNFs. A CNF is a set of
clauses, where a clause is a set of positive (Pk) or negative (N k) literals. We use S,T for
CNFs, C,D,E for clauses and L for literals. We write the empty clause as 2. The semantics
of CNFs (and literals) is defined in a similar fashion to that of formulas, and we will use the
same |= for it here:

A |= S def= ∀C∈S . ∃L∈C . A |= L,
A |= Pk = A k, A |= N k = (¬ A k).

To convert a formula into CNF, we first convert it into NNF (¬ is applied only to atoms)
by pushing ¬ downward and eliminating → in the usual fashion. To convert a formula in
NNF into CNF, we define another recursive function: cnf :: formula ⇒ literal set set. Its
only interesting equation is

cnf (F ∨ G) = {C ∪ D | C ∈ cnf F ∧ D ∈ cnf G}.

The semantic correctness of these transformations (A |= cnf (nnf F) ←→ A |= F) is trivial.
Our formalization of resolution as an inductively defined predicate requires two rules, as

shown in Figure 5. A resolution refutation of S is a derivation S `R 2. The following two
weakening rules will come in handy:

S `R C
T ∪ S `R C

(5)
S ∪ T `R C

∃D⊆{L}. {{L} ∪ E | E ∈ S} ∪ T `R D ∪ C
(6)
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A weaker version of (6) is presented by Gallier [15, §4.3.4] roughly as (we leave out any
formal notation): take a resolution refutation graph and insert an additional atom into some
of the start nodes’ clauses, then apply the same resolution steps as in the original graph. We
have to generalize this from assuming a refutation to an arbitrary resolution S ∪ T `R C to
show the claim by induction on the derivation.

7.1 Soundness and Completeness
Soundness (S `R 2 −→ ∀A. A 6|= S) is an easy corollary of the following lemma which is
proved by induction on S `R C :

S `R C ∧ A |= S −→ A |= {C}

We give two proofs of completeness. The first one follows Schöning [40]. Since the proof is
an induction on the set of atoms in the CNF, we need the following definitions to manipulate
that set:

kv def= case v of True ⇒ Pk | False ⇒ Nk
S [v/k] def= {C − {k ¬ v} | C ∈ S ∧ kv /∈ C}

The notational similarity with a substitution is deliberate, but beware that there is no new
formula or clause that gets substituted in. Instead, the CNF is modified as if that atom
index k had been set to the value v:

A |= S [v/k] ←→ A(k := v) |= S

We follow Schöning and show

(∀A. A 6|= S) ∧ finite (atoms S) −→ S `R 2

by induction on atoms S . The base case is trivial since S can only contain the empty clause.
In the step case we conclude that if ∀A. A 6|= S , then also ∀A. A 6|= S [v/k], and hence
S [v/k] `R 2 for any v and some k ∈ atoms S . For a slick formal proof of the final S `R 2, it
is necessary to find a suitable lemma that relates a CNF S [v/k] back to the original CNF S :

{if {k ¬ v} ∪ C ∈ S then {k ¬ v} ∪ C else C | C ∈ S [v/k]} ⊆ S

After splitting the set comprehension into two separate sets of clauses based on whether
{k ¬ v} ∪ C ∈ S , we can use the two weakening lemmas (5,6) and resolution to finish the
proof.

7.2 A Translation Between SC and Resolution
We provide a translation between SC proofs and resolution refutations. This yields a second
soundness and completeness argument. The idea is to translate from an SC proof Γ ⇒ ∅#
into a resolution refutation Γ ′ `R 2 where Γ ′ is a CNF corresponding to Γ. SC in the form
presented in Section 4.1 is not very suitable for this kind of reasoning. Instead, we follow an
idea by Gallier [15] and introduce LSC (shown in Figure 6), our own variant of Schütte’s
one-sided calculus K1 [41]. We prove

Γ ⇒ ∅# ←→ Γ ⇒L

To go from LSC to resolution we require a special normal form of formulas. The formula
should be a conjunction of disjunctions of literals, but with a twist: the conjunctions can
be arbitrarily nested but the disjunctions have to be nested to one side (we chose the right
side). This format is captured by the predicate is_cnf on formulas. With that, we can show
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6:10 Formalized Proof Systems for Propositional Logic

¬ Ak, Ak, Γ ⇒L

Ax
⊥, Γ ⇒L

BotL

F , Γ ⇒L

¬ (¬ F), Γ ⇒L

F , G, Γ ⇒L

F ∧ G, Γ ⇒L

AndL
¬ F , Γ ⇒L ¬ G, Γ ⇒L

¬ (F ∧ G), Γ ⇒L

F , Γ ⇒L G, Γ ⇒L

F ∨ G, Γ ⇒L

OrL
¬ F , ¬ G, Γ ⇒L

¬ (F ∨ G), Γ ⇒L

¬ F , Γ ⇒L G, Γ ⇒L

F → G, Γ ⇒L

F , ¬ G, Γ ⇒L

¬ (F → G), Γ ⇒L

Figure 6 Rules of LSC

(∀F∈#Γ. is_cnf F) ∧ Γ ⇒L −→
⋃
{cnf F | F ∈# Γ} `R 2

by induction on Γ ⇒L. The motivation for the special nesting of disjunctions is the OrL
case. In order to apply (6) one of the disjuncts must be a literal that can match L in (6).
The idea for this trick is borrowed from Gallier [15], but the details of the proofs differ (cf.
[26]).

In a second step we can use the lemma above to prove our main result:

{F}# ⇒ ∅# −→ cnf (nnf F) `R 2

Doing so requires a number of auxiliary lemmas with laborious proofs about converting
deductions of Γ ⇒L to deductions of Γ ′ ⇒L where Γ ′ is a variant of Γ such that is_cnf
holds for all elements of Γ ′.

We have also shown S `R 2 −→ ∃F . cnf (nnf F) ⊆ S ∧ {F}# ⇒ ∅#. We do not go
into this proof.

7.3 A Toy Resolution Prover
It is possible to generate code from executable Isabelle definitions; inductive definitions
are interpreted in a Prolog-like manner. Although applicable to `R, it leads to the usual
nontermination issue due to DFS. Thus we implement resolution by hand in two steps. First
we define a function res that computes all resolvents of a clause set:

res S def= (
⋃
C 1 ∈ S .

⋃
C 2 ∈ S .

⋃
L1 ∈ C 1.

⋃
L2 ∈ C 2.

case (L1,L2) of
(Pi,N j) ⇒ if i = j then {(C 1 − {Pi}) ∪ (C 2 − {N j})} else ∅
| _ ⇒ ∅)

Then we iterate res until no new clauses are generated:

Res S = (let R = res S ∪ S in if R = S then Some S else Res R)

The result is wrapped in datatype ′a option = None | Some ′a to express if the computation
diverged or produced a result a by returning None or Some a. For more details see [22, 7].
Because of Isabelle’s automatic data refinement of sets by lists this is an executable function.
We proved soundness and completeness wrt. `R and termination:

Res S = Some T −→ (C ∈ T ) = S `R C
finite S ∧ (∀C∈S . finite C ) −→ ∃T . Res S = Some T
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Of course we can only show termination for finite sets of finite clauses. The termination
proof relies on the fact that there is a finite bounding set, the set of all clauses that can be
constructed from the atoms in S, because resolution does not introduce new atoms.

Of course Res is inefficient and only useful for demonstration purposes. Efficient variants
would need much further refinement as in [4, 5].

8 Craig Interpolation

The interpolation theorem states: given an SC derivation Γ1 + Γ2 ⇒ ∆1 + ∆2, there exists
an interpolant G s.t.

Γ1 ⇒ G, ∆1 and G, Γ2 ⇒ ∆2 and
atoms G ⊆ atoms (Γ1 + ∆1) and atoms G ⊆ atoms (Γ2 + ∆2)

(A slightly less general version uses Γ2 = ∆1 = ∅#.) We follow the proof by Troelstra
and Schwichtenberg [48], which is by induction on the depth of the derivation. Instead of
formalizing the split sequents used in the original proof, we use multiset unions. Troelstra
and Schwichtenberg only provide the cases for Ax, BotL, ImpL and ImpR.

To avoid the other six cases, we rewrite formulas into the implicative fragment, i.e we
define a transformation from a formula F to a formula −→F :

−→Ak = Ak
−→
⊥ = ⊥

−−−−−→F → G = −→F →
−→G −−−−→F ∧ G = (−→F →

−→G → ⊥) → ⊥
−−→
¬ F = −→F → ⊥

−−−−→F ∨ G = (−→F → ⊥) →
−→G

Showing that this transformation preserves the semantics is trivial. Since we do not want to
introduce a semantic argument into our proof of interpolation, we also need to show that
derivability in SC is preserved by the transformation:

Γ ⇒ ∆ ←→ −→Γ ⇒
−→
∆

We show this using one induction over the SC rules for each direction of the logical equivalence.
In the direction from left to right, derivations can be transformed easily. The direction
from right to left is technically more difficult: the induction will produce two cases where
→ was the topmost connective of the last principal formula, but the → could be the result
of rewriting any of the four connectives ¬, ∧, ∨ or →. Appropriately splitting this into
cases requires some manual effort. This means that the reduced set of connectives does not
reduce the total proof effort for Craig interpolation dramatically, but we can also apply it to
contraction and cut admissibility.

The interpolation theorem is proved by induction on Γ ⇒ ∆ where Γ = Γ1 + Γ2 and ∆ =
∆1 + ∆2. In the proof, we can now assume that ¬, ∧ and ∨ do not occur anywhere, making
the corresponding six cases vacuous. The remaining four cases need to be split into a total
of 10 subcases distinguishing in which of the multisets Γ1, ∆1, Γ2, ∆2 the principal formula
occurred. In each of the subcases, we provide a witness for G. 4. Some of the difficulty of
the proof lies in finding a way to instantiate the induction hypothesis and then finding a
possible interpolation formula for the given instantiation. Consider, for example, the ImpL
case with F → H principal and F → H ∈# Γ1. For brevity, we define Γ1

′ s.t. Γ1 = F →
H , Γ1

′. Now, we have (at least) two choices: We can follow Troelstra and Schwichtenberg
and instantiate the IHs to obtain interpolants GF and GH such that:

4 In [48] one of the witnesses for Ax is ⊥ where it should be ⊥ → ⊥.
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Γ2 ⇒ GF , ∆2 and GF , Γ1
′⇒ F , ∆1 and

H , Γ1
′⇒ GH , ∆1 and GH , Γ2 ⇒ ∆2

The new interpolant is then GF → GH . Note that this is not the only possible interpolant.
Alternatively we can obtain a GF that satisfies Γ1

′⇒ GF , F , ∆1 and GF , Γ2 ⇒ ∆2 and
use GF ∨ GH as the interpolant.

While the above proof is fully constructive and provides witnesses for G in all cases,
splitting the sequent leads to a lot of technical detail. The next subsection shows an easy
semantic alternative.

8.1 Craig Interpolation via Substitution
It is also possible to show that if |= F → H , then there exists a formula G s.t.

|= F → G and |= G → H and
atoms G ⊆ atoms F ∩ atoms H

Doing so is interesting because there is a much easier proof with a different approach to
constructing the interpolant G, e.g. as presented by Harrison [18]: provide a uniform recursive
function that computes the interpolant:

interpolate F H =
(let K = atoms F − atoms H
in if K = ∅ then F

else let k = Min K in interpolate (F [(⊥ → ⊥)/k] ∨ F [⊥/k]) H )

where F [G/k] substitutes G for Ak in F and Min is (arbitrarily) used to select the minimal
index. The proof is by induction on the set atoms F − atoms H . The induction step follows
using A |= F −→ A |= F [(⊥ → ⊥)/k] ∨ F [⊥/k].

9 The Model Existence Theorem

So far we have invested a lot of work into constructive, or at least insightful proofs. This
section shows a way to derive many of the results with much less effort: the Model Existence
Theorem, as presented by Fitting [13] (originally by Smullyan [44, 45]). We begin by defining
when a set of formulas is a Hintikka set:

Hintikka S def= ⊥ /∈ S ∧ (∀ k. Ak ∈ S −→ ¬ Ak ∈ S −→ False) ∧
(∀F G. F ∧ G ∈ S −→ F ∈ S ∧ G ∈ S) ∧
(∀F G. F ∨ G ∈ S −→ F ∈ S ∨ G ∈ S) ∧
(∀F G. F → G ∈ S −→ ¬ F ∈ S ∨ G ∈ S) ∧
(∀F . ¬ (¬ F) ∈ S −→ F ∈ S) ∧
(∀F G. ¬ (F ∧ G) ∈ S −→ ¬ F ∈ S ∨ ¬ G ∈ S) ∧
(∀F G. ¬ (F ∨ G) ∈ S −→ ¬ F ∈ S ∧ ¬ G ∈ S) ∧
(∀F G. ¬ (F → G) ∈ S −→ F ∈ S ∧ ¬ G ∈ S)

Hintikka’s lemma shows that Hintikka sets are satisfiable:

Hintikka S −→ sat S

We continue by defining when a set T of sets of formulas is a propositional consistency
property:
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pcp T def= ∀S∈T . ⊥ /∈ S ∧ (∀ k. Ak ∈ S −→ ¬ Ak ∈ S −→ False) ∧
(∀F G. F ∧ G ∈ S −→ {F , G} ∪ S ∈ T ) ∧
(∀F G. F ∨ G ∈ S −→ {F} ∪ S ∈ T ∨ {G} ∪ S ∈ T ) ∧
(∀F G. F → G ∈ S −→ {¬ F} ∪ S ∈ T ∨ {G} ∪ S ∈ T ) ∧
(∀F . ¬ (¬ F) ∈ S −→ {F} ∪ S ∈ T ) ∧
(∀F G. ¬ (F ∧ G) ∈ S −→ {¬ F} ∪ S ∈ T ∨ {¬ G} ∪ S ∈ T ) ∧
(∀F G. ¬ (F ∨ G) ∈ S −→ {¬ F , ¬ G} ∪ S ∈ T ) ∧
(∀F G. ¬ (F → G) ∈ S −→ {F , ¬ G} ∪ S ∈ T )

Fitting’s proof [13] of the Model Existence Theorem

pcp T ∧ S ∈ T −→ sat S

shows that every pcp can be extended to one where every member is the start of a ⊆-chain
(constructed in a similar fashion to the sequence in Section 6). The limit of this sequence is a
Hintikka set, and by Hintikka’s lemma satisfiable. The theorem follows. Our formalization of
this proof matches Fitting’s proof very closely, and we do not want to repeat it here. Instead,
we present three examples where we applied the Model Existence Theorem:

For SC, we show the lemma

pcp {{F | F ∈# Γ} | Γ 6⇒ ∅#}.

The proof of this is constructed automatically after dealing with the slight discrepancies
between sets and multisets. Completeness (1) follows easily.
We show compactness using the fact that

pcp {W | fin_sat W }.

We show completeness of HS using

pcp {Γ | ¬ (Γ ∪ Axs1 `H ⊥)}.

This requires a significant amount of manual effort for proving derived rules, e.g.

Γ ∪ Axs1 `H F → G −→ Γ ∪ Axs1 `H ¬ F ∨ G

in our Hilbert system.

10 Conclusion

We have presented the formalization of a broad spectrum of calculi and results for classical
propositional logic. Although all of the constructions and proofs we formalized “worked”
in principle, the distances between the informal starting points and the formal text varied
considerably. On one end of the spectrum were beautiful abstract results like the Model
Existence Theorem whose proofs could be formalized very easily. On the other end of the
spectrum was the translation from sequent calculus proofs into resolution refutations because
it required to relate CNFs represented as formulas to CNFs represented as sets of clauses.
Proofs about resolution graphs can also become more complicated if they take the form
of global modifications of the graph: such one-step proofs required more subtle inductive
arguments. Somewhere in the middle of the spectrum are proofs about sequent calculus, e.g.
admissibility of cut or syntactic Craig interpolation. These careful syntactic arguments either
lead to long manual proofs or require special purpose automation to deal with multisets (or
structural rules, depending on the formalization).
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This work is a first step towards a basis for the growing collection of formalized logical
calculi. There is a plethora of important but non-trivial extensions, e.g. first-order, intu-
itionistic, or modal logics, that we hope to see formalized. Thiemann et al.’s formalization
IsaFoR/CeTA [46] of large parts of rewriting theory (starting with [47]) shows that the dream
of a unified formalization of logic is achievable and ideally the two efforts will be linked one
day.
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